

Welcome to Sahara!

The sahara project aims to provide users with a simple means to provision data
processing frameworks (such as Apache Hadoop, Apache Spark and Apache Storm)
on OpenStack. This is accomplished by specifying configuration parameters such
as the framework version, cluster topology, node hardware details and more.

Overview

	Rationale

	Architecture

	Roadmap [https://wiki.openstack.org/wiki/Sahara/Roadmap]

User guide

Installation

	Sahara Installation Guide

	Sahara Configuration Guide

	OpenStack Dashboard Configuration Guide

	Sahara Advanced Configuration Guide

	Sahara Upgrade Guide

	Sample sahara.conf file

How To

	Getting Started

	Sahara (Data Processing) UI User Guide

	Features Overview

	Registering an Image

Plugins

	Provisioning Plugins

	Vanilla Plugin

	Ambari Plugin

	Spark Plugin

	Cloudera Plugin

	MapR Distribution Plugin

Elastic Data Processing

	Elastic Data Processing (EDP)

	EDP Requirements

	EDP Technical Considerations

API

	Sahara REST API v1.1
	1 General API information

	2 API

Miscellaneous

	Requirements for Guests

	Swift Integration

	Building Images for Vanilla Plugin

	Building Images for Cloudera Plugin

Developer Guide

Programming HowTos and Tutorials

	Development Guidelines

	Setting Up a Development Environment

	Setup DevStack

	Sahara UI Dev Environment Setup

	Quickstart guide

	How to Participate

	How to build Oozie

	Adding Database Migrations

	Sahara Testing

	Log Guidelines

	API Version 2 Development

Background Concepts for Sahara

	Pluggable Provisioning Mechanism

	Plugin SPI

	Object Model

	Elastic Data Processing (EDP) SPI

	Sahara Cluster Statuses Overview

	How to run a Sahara cluster on bare metal servers

Other Resources

	Project hosting

	Code Reviews with Gerrit

	Continuous Integration with Jenkins

Rationale

Introduction

Apache Hadoop is an industry standard and widely adopted MapReduce
implementation, it is one among a growing number of data processing
frameworks. The aim of this project is to enable users to easily provision
and manage clusters with Hadoop and other data processing frameworks on
OpenStack. It is worth mentioning that Amazon has provided Hadoop for
several years as Amazon Elastic MapReduce (EMR) service.

Sahara aims to provide users with a simple means to provision Hadoop, Spark,
and Storm clusters by specifying several parameters such as the version,
cluster topology, hardware node details and more. After a user fills in all
the parameters, sahara deploys the cluster in a few minutes. Also sahara
provides means to scale an already provisioned cluster by adding or removing
worker nodes on demand.

The solution will address the following use cases:

	fast provisioning of data processing clusters on OpenStack for development
and quality assurance(QA).

	utilization of unused compute power from a general purpose OpenStack IaaS
cloud.

	“Analytics as a Service” for ad-hoc or bursty analytic workloads (similar
to AWS EMR).

Key features are:

	designed as an OpenStack component.

	managed through a REST API with a user interface(UI) available as part of
OpenStack Dashboard.

	support for a variety of data processing frameworks:

	multiple Hadoop vendor distributions.

	Apache Spark and Storm.

	pluggable system of Hadoop installation engines.

	integration with vendor specific management tools, such as Apache
Ambari and Cloudera Management Console.

	predefined configuration templates with the ability to modify parameters.

Details

The sahara product communicates with the following OpenStack services:

	Dashboard (horizon) - provides a GUI with ability to use all of sahara’s
features.

	Identity (keystone) - authenticates users and provides security tokens that
are used to work with OpenStack, limiting a user’s abilities in sahara to
their OpenStack privileges.

	Compute (nova) - used to provision VMs for data processing clusters.

	Orchestration (heat) - used to provision and orchestrate the deployment of
data processing clusters.

	Image (glance) - stores VM images, each image containing an operating system
and a pre-installed data processing distribution or framework.

	Object Storage (swift) - can be used as storage for job binaries and data
that will be processed or created by framework jobs.

	Block Storage (cinder) - can be used to provision block storage for VM
instances.

	Networking (neutron) - provides networking services to data processing
clusters.

	DNS service (designate) - provides ability to communicate with cluster
instances and Hadoop services by their hostnames.

	Telemetry (ceilometer) - used to collect measures of cluster usage for
metering and monitoring purposes.

	Shared file systems (manila) - can be used for storage of framework job
binaries and data that will be processed or created by jobs.

	Key manager (barbican & castellan) - persists the authentication data
like passwords and private keys in a secure storage.

[image: _images/openstack-interop.png]

General Workflow

Sahara will provide two levels of abstraction for the API and UI based on the
addressed use cases: cluster provisioning and analytics as a service.

For fast cluster provisioning a generic workflow will be as following:

	select a Hadoop (or framework) version.

	select a base image with or without pre-installed data processing framework:

	for base images without a pre-installed framework, sahara will support
pluggable deployment engines that integrate with vendor tooling.

	you can download prepared up-to-date images from
http://sahara-files.mirantis.com/images/upstream/

	define cluster configuration, including cluster size, topology, and
framework parameters (for example, heap size):

	to ease the configuration of such parameters, configurable templates
are provided.

	provision the cluster; sahara will provision VMs, install and configure
the data processing framework.

	perform operations on the cluster; add or remove nodes.

	terminate the cluster when it is no longer needed.

For analytics as a service, a generic workflow will be as following:

	select one of the predefined data processing framework versions.

	configure a job:

	choose the type of job: pig, hive, jar-file, etc.

	provide the job script source or jar location.

	select input and output data location.

	set the limit for the cluster size.

	execute the job:

	all cluster provisioning and job execution will happen transparently
to the user.

	cluster will be removed automatically after job completion.

	get the results of computations (for example, from swift).

User’s Perspective

While provisioning clusters through sahara, the user operates on three types
of entities: Node Group Templates, Cluster Templates and Clusters.

A Node Group Template describes a group of nodes within cluster. It contains
a list of hadoop processes that will be launched on each instance in a group.
Also a Node Group Template may provide node scoped configurations for those
processes. This kind of template encapsulates hardware parameters (flavor)
for the node VM and configuration for data processing framework processes
running on the node.

A Cluster Template is designed to bring Node Group Templates together to
form a Cluster. A Cluster Template defines what Node Groups will be included
and how many instances will be created in each. Some data processing framework
configurations can not be applied to a single node, but to a whole Cluster.
A user can specify these kinds of configurations in a Cluster Template. Sahara
enables users to specify which processes should be added to an anti-affinity
group within a Cluster Template. If a process is included into an
anti-affinity group, it means that VMs where this process is going to be
launched should be scheduled to different hardware hosts.

The Cluster entity represents a collection of VM instances that all have the
same data processing framework installed. It is mainly characterized by a VM
image with a pre-installed framework which will be used for cluster
deployment. Users may choose one of the pre-configured Cluster Templates to
start a Cluster. To get access to VMs after a Cluster has started, the user
should specify a keypair.

Sahara provides several constraints on cluster framework topology. You can see
all constraints in the documentation for the appropriate plugin.

Each Cluster belongs to an Identity service project determined by the user.
Users have access only to objects located in projects they have access to.
Users can edit and delete only objects they have created or exist in their
projects. Naturally, admin users have full access to every object. In this
manner, sahara complies with general OpenStack access policy.

Integration with Object Storage

The swift project provides the standard Object Storage service for OpenStack
environments; it is an analog of the Amazon S3 service. As a rule it is
deployed on bare metal machines. It is natural to expect data processing on
OpenStack to access data stored there. Sahara provides this option with a
file system implementation for swift
HADOOP-8545 [https://issues.apache.org/jira/browse/HADOOP-8545] and
Change I6b1ba25b [https://review.openstack.org/#/c/21015/] which
implements the ability to list endpoints for an object, account or container.
This makes it possible to integrate swift with software that relies on data
locality information to avoid network overhead.

To get more information on how to enable swift support see
Swift Integration.

Pluggable Deployment and Monitoring

In addition to the monitoring capabilities provided by vendor-specific
Hadoop management tooling, sahara provides pluggable integration with
external monitoring systems such as Nagios or Zabbix.

Both deployment and monitoring tools can be installed on standalone VMs,
thus allowing a single instance to manage and monitor several clusters at
once.

Architecture

[image: _images/sahara-architecture.svg]

The Sahara architecture consists of several components:

	Auth component - responsible for client authentication & authorization,
communicates with the OpenStack Identity service (keystone).

	DAL - Data Access Layer, persists internal models in DB.

	Secure Storage Access Layer - persists the authentication data like passwords
and private keys in a secure storage.

	Provisioning Engine - component responsible for communication with
the OpenStack Compute (nova), Orchestration (heat), Block Storage (cinder),
Image (glance), and DNS (designate) services.

	Vendor Plugins - pluggable mechanism responsible for configuring and
launching data processing frameworks on provisioned VMs. Existing
management solutions like Apache Ambari and Cloudera Management Console
could be utilized for that purpose as well.

	EDP - Elastic Data Processing (EDP) responsible for scheduling and managing
data processing jobs on clusters provisioned by sahara.

	REST API - exposes sahara functionality via REST HTTP interface.

	Python Sahara Client - like other OpenStack components, sahara has
its own python client.

	Sahara pages - a GUI for the sahara is located in the OpenStack Dashboard
(horizon).

Sahara Installation Guide

We recommend installing sahara in a way that will keep your system in a
consistent state. We suggest the following options:

	Install via Fuel [http://fuel.mirantis.com/]

	Install via RDO [https://www.rdoproject.org/]

	Install into a virtual environment

To install with Fuel

	Start by following the MOS Quickstart [http://software.mirantis.com/quick-start/] to install and setup
OpenStack.

	Enable the sahara service during installation.

To install with RDO

	Start by following the RDO Quickstart [https://www.rdoproject.org/install/quickstart/] to install and setup
OpenStack.

	Install sahara:

yum install openstack-sahara

	Configure sahara as needed. The configuration file is located in
/etc/sahara/sahara.conf. For details see
Sahara Configuration Guide

	Create the database schema:

sahara-db-manage --config-file /etc/sahara/sahara.conf upgrade head

	Go through Common installation steps and make any
necessary changes.

	Start the sahara-api and sahara-engine services:

systemctl start openstack-sahara-api
systemctl start openstack-sahara-engine

	(Optional) Enable sahara services to start on boot

systemctl enable openstack-sahara-api
systemctl enable openstack-sahara-engine

To install into a virtual environment

	First you need to install a number of packages with your
OS package manager. The list of packages depends on the OS you use.
For Ubuntu run:

$ sudo apt-get install python-setuptools python-virtualenv python-dev

For Fedora:

$ sudo yum install gcc python-setuptools python-virtualenv python-devel

For CentOS:

$ sudo yum install gcc python-setuptools python-devel
$ sudo easy_install pip
$ sudo pip install virtualenv

	Setup a virtual environment for sahara:

$ virtualenv sahara-venv

This will install a python virtual environment into sahara-venv
directory in your current working directory. This command does not
require super user privileges and can be executed in any directory where
the current user has write permissions.

	You can get a sahara archive from
http://tarballs.openstack.org/sahara/ and install it using pip:

$ sahara-venv/bin/pip install 'http://tarballs.openstack.org/sahara/sahara-master.tar.gz'

Note that sahara-master.tar.gz contains the latest changes and
might not be stable at the moment. We recommend browsing
http://tarballs.openstack.org/sahara/ and selecting the latest
stable release. For installation just execute (where replace the ‘release’
word with release name, e.g. ‘mitaka’):

$ sahara-venv/bin/pip install 'http://tarballs.openstack.org/sahara/sahara-stable-release.tar.gz'

For example, you can get Sahara Mitaka release by executing:

$ sahara-venv/bin/pip install 'http://tarballs.openstack.org/sahara/sahara-stable-mitaka.tar.gz'

	After installation you should create a configuration file from the sample
file located in sahara-venv/share/sahara/sahara.conf.sample-basic:

$ mkdir sahara-venv/etc
$ cp sahara-venv/share/sahara/sahara.conf.sample-basic sahara-venv/etc/sahara.conf

Make any necessary changes to sahara-venv/etc/sahara.conf.
For details see Sahara Configuration Guide

Common installation steps

The steps below are common to both the RDO and virtual environment
installations of sahara.

	If you use sahara with a MySQL database, then for storing big job binaries
in the sahara internal database you must configure the size of the maximum
allowed packet. Edit the my.cnf file and change the
max_allowed_packet parameter as follows:

...
[mysqld]
...
max_allowed_packet = 256M

Then restart the mysql server to ensure these changes are active.

	Create the database schema:

$ sahara-venv/bin/sahara-db-manage --config-file sahara-venv/etc/sahara.conf upgrade head

	Start sahara services from different terminals:

first terminal
$ sahara-venv/bin/sahara-api --config-file sahara-venv/etc/sahara.conf

second terminal
$ sahara-venv/bin/sahara-engine --config-file sahara-venv/etc/sahara.conf

	For sahara to be accessible in the OpenStack Dashboard and for
python-saharaclient to work properly you must register sahara in
the Identity service catalog. For example:

openstack service create --name sahara --description \
 "Sahara Data Processing" data-processing

openstack endpoint create --region RegionOne \
--publicurl http://10.0.0.2:8386/v1.1/%\(project_id\)s \
--adminurl http://10.0.0.2:8386/v1.1/%\(project_id\)s \
--internalurl http://10.0.0.2:8386/v1.1/%\(project_id\)s \
data-processing

Note

You have to install the openstack-client package in order to execute
openstack command.

	For more information on configuring sahara with the OpenStack Dashboard
please see OpenStack Dashboard Configuration Guide.

Optional installation of default templates

Sahara bundles default templates that define simple clusters for the
supported plugins. These templates may optionally be added to the
sahara database using a simple CLI included with sahara.

The default template CLI is described in detail in a README file
included with the sahara sources at <sahara_home>/db/templates/README.rst
but it is summarized here.

Flavor id values must be specified for the default templates included
with sahara. The recommended configuration values below correspond to the
m1.medium and m1.large flavors in a default OpenStack installation (if
these flavors have been edited, their corresponding values will be different).
Values for flavor_id should be added to /etc/sahara/sahara.conf or another
configuration file in the sections shown here:

[DEFAULT]
Use m1.medium for {flavor_id} unless specified in another section
flavor_id = 2

[cdh-5-default-namenode]
Use m1.large for {flavor_id} in the cdh-5-default-namenode template
flavor_id = 4

[cdh-530-default-namenode]
Use m1.large for {flavor_id} in the cdh-530-default-namenode template
flavor_id = 4

The above configuration values are included in a sample configuration
file at <sahara_home>/plugins/default_templates/template.conf

The command to install all of the default templates is as follows, where
$PROJECT_ID should be a valid project id and the above configuration values
have been set in myconfig:

$ sahara-templates --config-file /etc/sahara/sahara.conf --config-file myconfig update -t $PROJECT_ID

Help is available from the sahara-templates command:

$ sahara-templates --help
$ sahara-templates update --help

Notes:

Ensure that your operating system is not blocking the sahara port
(default: 8386). You may need to configure iptables in CentOS and
other Linux distributions to allow this access.

To get the list of all possible options run:

$ sahara-venv/bin/python sahara-venv/bin/sahara-api --help
$ sahara-venv/bin/python sahara-venv/bin/sahara-engine --help

Further, consider reading Getting Started for general sahara concepts and
Provisioning Plugins for specific plugin features/requirements.

Sahara Configuration Guide

This guide covers the steps for a basic configuration of sahara.
It will help you to configure the service in the most simple
manner.

Basic configuration

Sahara is packaged with a basic sample configuration file:
sahara.conf.sample-basic. This file contains all the essential
parameters that are required for sahara. We recommend creating your
configuration file based on this basic example.

If a more thorough configuration is needed we recommend using the tox
tool to create a full configuration file by executing the following
command:

$ tox -e genconfig

Running this command will create a file named sahara.conf.sample
in the etc/sahara directory of the project.

After creating a configuration file by either copying the basic example
or generating one, edit the connection parameter in the
[database] section. The URL provided here should point to an empty
database. For example, the connection string for a MySQL database will be:

connection=mysql://username:password@host:port/database

Next you will configure the Identity service parameters in the
[keystone_authtoken] section. The auth_uri parameter
should point to the public Identity API endpoint. The identity_uri
should point to the admin Identity API endpoint. For example:

auth_uri=http://127.0.0.1:5000/v2.0/
identity_uri=http://127.0.0.1:35357/

Specify the admin_user, admin_password and admin_tenant_name.
These parameters must specify an Identity user who has the admin role
in the given project. These credentials allow sahara to authenticate and
authorize its users.

Next you will configure the default Networking service. If using
neutron for networking the following parameter should be set
in the [DEFAULT] section:

use_neutron=true

If you are using nova-network for networking then this parameter should
be set to false.

With these parameters set, sahara is ready to run.

By default the sahara’s log level is set to INFO. If you wish to increase
the logging levels for troubleshooting, set debug to true in the
[DEFAULT] section of the configuration file.

Networking configuration

By default sahara is configured to use the neutron. Additionally, if the
cluster supports network namespaces the use_namespaces property can
be used to enable their usage.

[DEFAULT]
use_neutron=True
use_namespaces=True

Note

If a user other than root will be running the Sahara server
instance and namespaces are used, some additional configuration is
required, please see Non-root users for more information.

If an OpenStack cluster uses the deprecated nova-network,
then the use_neutron parameter should be set to False in the
sahara configuration file.

Floating IP management

During cluster setup sahara must access instances through a secure
shell (SSH). To establish this connection it may use either the fixed
or floating IP address of an instance. By default sahara is configured
to use floating IP addresses for access. This is controlled by the
use_floating_ips configuration parameter. With this setup the user
has two options for ensuring that the instances in the node groups
templates that requires floating IPs gain a floating IP address:

	If using the nova-network, it may be configured to assign floating
IP addresses automatically by setting the auto_assign_floating_ip
parameter to True in the nova configuration file
(usually nova.conf).

	The user may specify a floating IP address pool for each node
group that requires floating IPs directly.

From Newton changes were made to allow the coexistence of clusters using
floating IPs and clusters using fixed IPs. If use_floating_ips is
True it means that the floating IPs can be used by Sahara to spawn clusters.
But, differently from previous versions, this does not mean that all
instances in the cluster must have floating IPs and that all clusters
must use floating IPs. It is possible in a single Sahara deploy to have
clusters setup using fixed IPs, clusters using floating IPs and cluster that
use both.

If not using floating IP addresses (use_floating_ips=False) sahara
will use fixed IP addresses for instance management. When using neutron
for the Networking service the user will be able to choose the
fixed IP network for all instances in a cluster. Whether using nova-network
or neutron it is important to ensure that all instances running sahara
have access to the fixed IP networks.

Notifications configuration

Sahara can be configured to send notifications to the OpenStack
Telemetry module. To enable this functionality the following parameter
enable should be set in the [oslo_messaging_notifications] section
of the configuration file:

[oslo_messaging_notifications]
enable = true

And the following parameter driver should be set in the
[oslo_messaging_notifications] section of the configuration file:

[oslo_messaging_notifications]
driver = messaging

By default sahara is configured to use RabbitMQ as its message broker.

If you are using RabbitMQ as the message broker, then you should set the
following parameter in the [DEFAULT] section:

rpc_backend = rabbit

You may also need to specify the connection parameters for your
RabbitMQ installation. The following example shows the default
values in the [oslo_messaging_rabbit] section which may need
adjustment:

rabbit_host=localhost
rabbit_port=5672
rabbit_hosts=$rabbit_host:$rabbit_port
rabbit_userid=guest
rabbit_password=guest
rabbit_virtual_host=/

Orchestration configuration

By default sahara is configured to use the heat engine for instance
creation. The heat engine uses the OpenStack Orchestration service to
provision instances. This engine makes calls directly to the services required
for instance provisioning.

Policy configuration

Sahara’s public API calls may be restricted to certain sets of users by
using a policy configuration file. The location of the policy file(s)
is controlled by the policy_file and policy_dirs parameters
in the [oslo_policy] section. By default sahara will search for
a policy.json file in the same directory as the sahara.conf
configuration file.

Examples

Example 1. Allow all method to all users (default policy).

{
 "default": ""
}

Example 2. Disallow image registry manipulations to non-admin users.

{
 "default": "",

 "data-processing:images:register": "role:admin",
 "data-processing:images:unregister": "role:admin",
 "data-processing:images:add_tags": "role:admin",
 "data-processing:images:remove_tags": "role:admin"
}

API configuration

Sahara uses the api-paste.ini file to configure the data processing API
service. For middleware injection sahara uses pastedeploy library. The location
of the api-paste file is controlled by the api_paste_config parameter in
the [default] section. By default sahara will search for a
api-paste.ini file in the same directory as the configuration file.

OpenStack Dashboard Configuration Guide

Sahara UI panels are integrated into the OpenStack Dashboard repository. No
additional steps are required to enable Sahara UI in OpenStack Dashboard.
However there are a few configurations that should be made to configure
OpenStack Dashboard.

Dashboard configurations are applied through the local_settings.py file.
The sample configuration file is available here. [https://github.com/openstack/horizon/blob/master/openstack_dashboard/local/local_settings.py.example]

1. Networking

Depending on the Networking backend (Nova Network or Neutron) used in the
cloud, Sahara panels will determine automatically which input fields should be
displayed.

While using Nova Network backend the cloud may be configured to automatically
assign floating IPs to instances. If Sahara service is configured to use those
automatically assigned floating IPs the same configuration should be done to
the dashboard through the SAHARA_AUTO_IP_ALLOCATION_ENABLED parameter.

Example:

SAHARA_AUTO_IP_ALLOCATION_ENABLED = True

2. Different endpoint

Sahara UI panels normally use data-processing endpoint from Keystone to
talk to Sahara service. In some cases it may be useful to switch to another
endpoint, for example use locally installed Sahara instead of the one on the
OpenStack controller.

To switch the UI to another endpoint the endpoint should be registered in the
first place.

Local endpoint example:

openstack service create --name sahara_local --description \
 "Sahara Data Processing (local installation)" \
 data_processing_local

openstack endpoint create --region RegionOne \
--publicurl http://127.0.0.1:8386/v1.1/%\(project_id\)s \
--adminurl http://127.0.0.1:8386/v1.1/%\(project_id\)s \
--internalurl http://127.0.0.1:8386/v1.1/%\(project_id\)s \
data_processing_local

Then the endpoint name should be changed in sahara.py under the module of
sahara-dashboard/sahara_dashboard/api/sahara.py. [https://github.com/openstack/sahara-dashboard/blob/master/sahara_dashboard/api/sahara.py]

"type" of Sahara service registered in keystone
SAHARA_SERVICE = 'data_processing_local'

Sahara Advanced Configuration Guide

This guide addresses specific aspects of Sahara configuration that pertain to
advanced usage. It is divided into sections about various features that can be
utilized, and their related configurations.

Custom network topologies

Sahara accesses instances at several stages of cluster spawning through
SSH and HTTP. Floating IPs and network namespaces
(see Networking configuration) will be automatically used for
access when present. When floating IPs are not assigned to instances and
namespaces are not being used, sahara will need an alternative method to
reach them.

The proxy_command parameter of the configuration file can be used to
give sahara a command to access instances. This command is run on the
sahara host and must open a netcat socket to the instance destination
port. The {host} and {port} keywords should be used to describe the
destination, they will be substituted at runtime. Other keywords that
can be used are: {tenant_id}, {network_id} and {router_id}.

For example, the following parameter in the sahara configuration file
would be used if instances are accessed through a relay machine:

[DEFAULT]
proxy_command='ssh relay-machine-{tenant_id} nc {host} {port}'

Whereas the following shows an example of accessing instances though
a custom network namespace:

[DEFAULT]
proxy_command='ip netns exec ns_for_{network_id} nc {host} {port}'

DNS Hostname Resolution

Sahara can resolve hostnames of cluster instances by using DNS. For this Sahara
uses Designate. With this feature, for each instance of the cluster Sahara will
create two A records (for internal and external ips) under one hostname
and one PTR record. Also all links in the Sahara dashboard will be
displayed as hostnames instead of just ip addresses.

You should configure DNS server with Designate. Designate service should be
properly installed and registered in Keystone catalog. The detailed
instructions about Designate configuration can be found here: Designate manual
installation [http://docs.openstack.org/developer/designate/install/ubuntu-liberty.html] and here: Configuring OpenStack Networking with Designate [http://docs.openstack.org/mitaka/networking-guide/adv-config-dns.html#configuring-openstack-networking-for-integration-with-an-external-dns-service].
Also if you use devstack you can just enable Designate plugin:
Designate devstack [http://docs.openstack.org/developer/designate/devstack.html].

When Designate is configured you should create domain(s) for hostname
resolution. This can be done by using the Designate dashboard or by CLI. Also
you have to create in-addr.arpa. domain for reverse hostname resolution
because some plugins (e.g. HDP) determine hostname by ip.

Sahara also should be properly configured. In sahara.conf you must specify
two config properties:

[DEFAULT]
Use Designate for internal and external hostnames resolution:
use_designate=true
IP addresses of Designate nameservers:
nameservers=1.1.1.1,2.2.2.2

An OpenStack operator should properly configure the network. It must enable
DHCP and specify DNS server ip addresses (e.g. 1.1.1.1 and 2.2.2.2) in
DNS Name Servers field in the Subnet Details. If the subnet already
exists and changing it or creating new one is impossible then Sahara will
manually change /etc/resolv.conf file on every instance of the cluster (if
nameservers list have been specified in sahara.conf). In this case,
though, Sahara cannot guarantee that these changes will not be overwritten by
DHCP or other services of the existing network. Sahara has a health check for
track this situation (and if it occurs the health status will be red).

In order to resolve hostnames from your local machine you should properly
change your /etc/resolv.conf file by adding appropriate ip addresses of
DNS servers (e.g. 1.1.1.1 and 2.2.2.2). Also the VMs with DNS servers should
be available from your local machine.

Data-locality configuration

Hadoop provides the data-locality feature to enable task tracker and
data nodes the capability of spawning on the same rack, Compute node,
or virtual machine. Sahara exposes this functionality to the user
through a few configuration parameters and user defined topology files.

To enable data-locality, set the enable_data_locality parameter to
true in the sahara configuration file

[DEFAULT]
enable_data_locality=true

With data locality enabled, you must now specify the topology files
for the Compute and Object Storage services. These files are
specified in the sahara configuration file as follows:

[DEFAULT]
compute_topology_file=/etc/sahara/compute.topology
swift_topology_file=/etc/sahara/swift.topology

The compute_topology_file should contain mappings between Compute
nodes and racks in the following format:

compute1 /rack1
compute2 /rack2
compute3 /rack2

Note that the Compute node names must be exactly the same as configured in
OpenStack (host column in admin list for instances).

The swift_topology_file should contain mappings between Object Storage
nodes and racks in the following format:

node1 /rack1
node2 /rack2
node3 /rack2

Note that the Object Storage node names must be exactly the same as
configured in the object ring. Also, you should ensure that instances
with the task tracker process have direct access to the Object Storage
nodes.

Hadoop versions after 1.2.0 support four-layer topology (for more detail
please see HADOOP-8468 JIRA issue [https://issues.apache.org/jira/browse/HADOOP-8468]). To enable this feature set the
enable_hypervisor_awareness parameter to true in the configuration
file. In this case sahara will add the Compute node ID as a second level of
topology for virtual machines.

Distributed mode configuration

Sahara can be configured to run in a distributed mode that creates a
separation between the API and engine processes. This allows the API
process to remain relatively free to handle requests while offloading
intensive tasks to the engine processes.

The sahara-api application works as a front-end and serves user
requests. It offloads ‘heavy’ tasks to the sahara-engine process
via RPC mechanisms. While the sahara-engine process could be loaded
with tasks, sahara-api stays free and hence may quickly respond to
user queries.

If sahara runs on several hosts, the API requests could be
balanced between several sahara-api hosts using a load balancer.
It is not required to balance load between different sahara-engine
hosts as this will be automatically done via the message broker.

If a single host becomes unavailable, other hosts will continue
serving user requests. Hence, a better scalability is achieved and some
fault tolerance as well. Note that distributed mode is not a true
high availability. While the failure of a single host does not
affect the work of the others, all of the operations running on
the failed host will stop. For example, if a cluster scaling is
interrupted, the cluster will be stuck in a half-scaled state. The
cluster might continue working, but it will be impossible to scale it
further or run jobs on it via EDP.

To run sahara in distributed mode pick several hosts on which
you want to run sahara services and follow these steps:

	On each host install and configure sahara using the
installation guide
except:

	Do not run sahara-db-manage or launch sahara with sahara-all

	Ensure that each configuration file provides a database connection
string to a single database for all hosts.

	Run sahara-db-manage as described in the installation guide,
but only on a single (arbitrarily picked) host.

	The sahara-api and sahara-engine processes use oslo.messaging to
communicate with each other. You will need to configure it properly on
each host (see below).

	Run sahara-api and sahara-engine on the desired hosts. You may
run both processes on the same or separate hosts as long as they are
configured to use the same message broker and database.

To configure oslo.messaging, first you will need to choose a message
broker driver. Currently there are two drivers provided: RabbitMQ
or ZeroMQ. For the RabbitMQ drivers please see the
Notifications configuration documentation for an explanation of
common configuration options.

For an expanded view of all the options provided by each message broker
driver in oslo.messaging please refer to the options available in the
respective source trees:

	For Rabbit MQ see
	rabbit_opts variable in impl_rabbit.py [https://git.openstack.org/cgit/openstack/oslo.messaging/tree/oslo/messaging/_drivers/impl_rabbit.py?id=1.4.0#n38]

	amqp_opts variable in amqp.py [https://git.openstack.org/cgit/openstack/oslo.messaging/tree/oslo/messaging/_drivers/amqp.py?id=1.4.0#n37]

	For Zmq see
	zmq_opts variable in impl_zmq.py [https://git.openstack.org/cgit/openstack/oslo.messaging/tree/oslo/messaging/_drivers/impl_zmq.py?id=1.4.0#n49]

	matchmaker_opts variable in matchmaker.py [https://git.openstack.org/cgit/openstack/oslo.messaging/tree/oslo/messaging/_drivers/matchmaker.py?id=1.4.0#n27]

	matchmaker_redis_opts variable in matchmaker_redis.py [https://git.openstack.org/cgit/openstack/oslo.messaging/tree/oslo/messaging/_drivers/matchmaker_redis.py?id=1.4.0#n26]

	matchmaker_opts variable in matchmaker_ring.py [https://git.openstack.org/cgit/openstack/oslo.messaging/tree/oslo/messaging/_drivers/matchmaker_ring.py?id=1.4.0#n27]

These options will also be present in the generated sample configuration
file. For instructions on creating the configuration file please see the
Sahara Configuration Guide.

Distributed periodic tasks configuration

If sahara is configured to run in distributed mode (see
Distributed mode configuration), periodic tasks can also be launched in
distributed mode. In this case tasks will be split across all sahara-engine
processes. This will reduce overall load.

Distributed periodic tasks are based on Hash Ring implementation and the Tooz
library that provides group membership support for a set of backends. In order
to use periodic tasks distribution, the following steps are required:

	One of the supported backends [http://docs.openstack.org/developer/tooz/compatibility.html#driver-support] should be configured and started.

	Backend URL should be set in the sahara configuration file with the
periodic_coordinator_backend_url parameter. For example, if the
ZooKeeper backend is being used:

[DEFAULT]
periodic_coordinator_backend_url=kazoo://IP:PORT

	Tooz extras should be installed. When using Zookeeper as coordination
backend, kazoo library should be installed. It can be done with pip:

pip install tooz[zookeeper]

	Periodic tasks can be performed in parallel. Number of threads to run
periodic tasks on a single engine can be set with
periodic_workers_number parameter (only 1 thread will be launched by
default). Example:

[DEFAULT]
periodic_workers_number=2

	coordinator_heartbeat_interval can be set to change the interval between
heartbeat execution (1 second by default). Heartbeats are needed to make
sure that connection to the coordination backend is active. Example:

[DEFAULT]
coordinator_heartbeat_interval=2

	hash_ring_replicas_count can be set to change the number of replicas for
each engine on a Hash Ring. Each replica is a point on a Hash Ring that
belongs to a particular engine. A larger number of replicas leads to better
task distribution across the set of engines. (40 by default). Example:

[DEFAULT]
hash_ring_replicas_count=100

External key manager usage

Sahara generates and stores several passwords during the course of operation.
To harden sahara’s usage of passwords it can be instructed to use an
external key manager for storage and retrieval of these secrets. To enable
this feature there must first be an OpenStack Key Manager service deployed
within the stack.

With a Key Manager service deployed on the stack, sahara must be configured
to enable the external storage of secrets. Sahara uses the
castellan [http://docs.openstack.org/developer/castellan/] library
to interface with the OpenStack Key Manager service. This library provides
configurable access to a key manager. To configure sahara to use barbican as
the key manager, edit the sahara configuration file as follows:

[DEFAULT]
use_barbican_key_manager=true

Enabling the use_barbican_key_manager option will configure castellan
to use barbican as its key management implementation. By default it will
attempt to find barbican in the Identity service’s service catalog.

For added control of the barbican server location, optional configuration
values may be added to specify the URL for the barbican API server.

[castellan]
barbican_api_endpoint=http://{barbican controller IP:PORT}/
barbican_api_version=v1

The specific values for the barbican endpoint will be dictated by the
IP address of the controller for your installation.

With all of these values configured and the Key Manager service deployed,
sahara will begin storing its secrets in the external manager.

Indirect instance access through proxy nodes

Warning

The indirect VMs access feature is in alpha state. We do not
recommend using it in a production environment.

Sahara needs to access instances through SSH during cluster setup. This
access can be obtained a number of different ways (see
Networking configuration, Floating IP management,
Custom network topologies). Sometimes it is impossible to provide
access to all nodes (because of limited numbers of floating IPs or security
policies). In these cases access can be gained using other nodes of the
cluster as proxy gateways. To enable this set is_proxy_gateway=true
for the node group you want to use as proxy. Sahara will communicate with
all other cluster instances through the instances of this node group.

Note, if use_floating_ips=true and the cluster contains a node group with
is_proxy_gateway=true, the requirement to have floating_ip_pool
specified is applied only to the proxy node group. Other instances will be
accessed through proxy instances using the standard private network.

Note, the Cloudera Hadoop plugin doesn’t support access to Cloudera manager
through a proxy node. This means that for CDH clusters only nodes with
the Cloudera manager can be designated as proxy gateway nodes.

Multi region deployment

Sahara supports multi region deployment. To enable this option each
instance of sahara should have the os_region_name=<region>
parameter set in the configuration file. The following example demonstrates
configuring sahara to use the RegionOne region:

[DEFAULT]
os_region_name=RegionOne

Non-root users

In cases where a proxy command is being used to access cluster instances
(for example, when using namespaces or when specifying a custom proxy
command), rootwrap functionality is provided to allow users other than
root access to the needed operating system facilities. To use rootwrap
the following configuration parameter is required to be set:

[DEFAULT]
use_rootwrap=true

Assuming you elect to leverage the default rootwrap command
(sahara-rootwrap), you will need to perform the following additional setup
steps:

	Copy the provided sudoers configuration file from the local project file
etc/sudoers.d/sahara-rootwrap to the system specific location, usually
/etc/sudoers.d. This file is setup to allow a user named sahara
access to the rootwrap script. It contains the following:

sahara ALL = (root) NOPASSWD: /usr/bin/sahara-rootwrap /etc/sahara/rootwrap.conf *

When using devstack to deploy sahara, please pay attention that you need to
change user in script from sahara to stack.

	Copy the provided rootwrap configuration file from the local project file
etc/sahara/rootwrap.conf to the system specific location, usually
/etc/sahara. This file contains the default configuration for rootwrap.

	Copy the provided rootwrap filters file from the local project file
etc/sahara/rootwrap.d/sahara.filters to the location specified in the
rootwrap configuration file, usually /etc/sahara/rootwrap.d. This file
contains the filters that will allow the sahara user to access the
ip netns exec, nc, and kill commands through the rootwrap
(depending on proxy_command you may need to set additional filters).
It should look similar to the followings:

[Filters]
ip: IpNetnsExecFilter, ip, root
nc: CommandFilter, nc, root
kill: CommandFilter, kill, root

If you wish to use a rootwrap command other than sahara-rootwrap you can
set the following parameter in your sahara configuration file:

[DEFAULT]
rootwrap_command='sudo sahara-rootwrap /etc/sahara/rootwrap.conf'

For more information on rootwrap please refer to the
official Rootwrap documentation [https://wiki.openstack.org/wiki/Rootwrap]

Object Storage access using proxy users

To improve security for clusters accessing files in Object Storage,
sahara can be configured to use proxy users and delegated trusts for
access. This behavior has been implemented to reduce the need for
storing and distributing user credentials.

The use of proxy users involves creating an Identity domain that will be
designated as the home for these users. Proxy users will be
created on demand by sahara and will only exist during a job execution
which requires Object Storage access. The domain created for the
proxy users must be backed by a driver that allows sahara’s admin user to
create new user accounts. This new domain should contain no roles, to limit
the potential access of a proxy user.

Once the domain has been created, sahara must be configured to use it by
adding the domain name and any potential delegated roles that must be used
for Object Storage access to the sahara configuration file. With the
domain enabled in sahara, users will no longer be required to enter
credentials for their data sources and job binaries referenced in
Object Storage.

Detailed instructions

First a domain must be created in the Identity service to hold proxy
users created by sahara. This domain must have an identity backend driver
that allows for sahara to create new users. The default SQL engine is
sufficient but if your keystone identity is backed by LDAP or similar
then domain specific configurations should be used to ensure sahara’s
access. Please see the Keystone documentation [http://docs.openstack.org/developer/keystone/configuration.html#domain-specific-drivers] for more information.

With the domain created, sahara’s configuration file should be updated to
include the new domain name and any potential roles that will be needed. For
this example let’s assume that the name of the proxy domain is
sahara_proxy and the roles needed by proxy users will be Member and
SwiftUser.

[DEFAULT]
use_domain_for_proxy_users=true
proxy_user_domain_name=sahara_proxy
proxy_user_role_names=Member,SwiftUser

A note on the use of roles. In the context of the proxy user, any roles
specified here are roles intended to be delegated to the proxy user from the
user with access to Object Storage. More specifically, any roles that
are required for Object Storage access by the project owning the object
store must be delegated to the proxy user for authentication to be
successful.

Finally, the stack administrator must ensure that images registered with
sahara have the latest version of the Hadoop swift filesystem plugin
installed. The sources for this plugin can be found in the
sahara extra repository [http://github.com/openstack/sahara-extra]. For more information on images or swift
integration see the sahara documentation sections
Building Images for Vanilla Plugin and Swift Integration.

Volume instance locality configuration

The Block Storage service provides the ability to define volume instance
locality to ensure that instance volumes are created on the same host
as the hypervisor. The InstanceLocalityFilter provides the mechanism
for the selection of a storage provider located on the same physical
host as an instance.

To enable this functionality for instances of a specific node group, the
volume_local_to_instance field in the node group template should be
set to true and some extra configurations are needed:

	The cinder-volume service should be launched on every physical host and at
least one physical host should run both cinder-scheduler and
cinder-volume services.

	InstanceLocalityFilter should be added to the list of default filters
(scheduler_default_filters in cinder) for the Block Storage
configuration.

	The Extended Server Attributes extension needs to be active in the Compute
service (this is true by default in nova), so that the
OS-EXT-SRV-ATTR:host property is returned when requesting instance
info.

	The user making the call needs to have sufficient rights for the property to
be returned by the Compute service.
This can be done by:

	by changing nova’s policy.json to allow the user access to the
extended_server_attributes option.

	by designating an account with privileged rights in the cinder
configuration:

os_privileged_user_name =
os_privileged_user_password =
os_privileged_user_tenant =

It should be noted that in a situation when the host has no space for volume
creation, the created volume will have an Error state and can not be used.

Autoconfiguration for templates

Autoconfiguring templates

NTP service configuration

By default sahara will enable the NTP service on all cluster instances if the
NTP package is included in the image (the sahara disk image builder will
include NTP in all images it generates). The default NTP server will be
pool.ntp.org; this can be overridden using the default_ntp_server
setting in the DEFAULT section of the sahara configuration file.

If you are creating cluster templates using the sahara UI and would like to
specify a different NTP server for a particular cluster template, use the URL
of NTP server setting in the General Parameters section when you create
the template. If you would like to disable NTP for a particular cluster
template, deselect the Enable NTP service checkbox in the General
Parameters section when you create the template.

If you are creating clusters using the sahara CLI, you can specify another NTP
server or disable NTP service using the examples below.

If you want to enable configuring the NTP service, you should specify the
following configs for the cluster:

cluster_configs: {
 "general": {
 "URL of NTP server": "your_server.net",
 }
}

If you want to disable configuring NTP service, you should specify following
configs for the cluster:

"cluster_configs": {
 "general": {
 "Enable NTP service": false,
 }
}

CORS (Cross Origin Resource Sharing) Configuration

Sahara provides direct API access to user-agents (browsers) via the HTTP
CORS protocol. Detailed documentation, as well as troubleshooting examples,
may be found in the OpenStack Administrator Guide [http://docs.openstack.org/admin-guide/cross_project_cors.html].

To get started quickly, use the example configuration block below, replacing
the allowed origin field with the host(s) from which your API expects
access.

[cors]
allowed_origin=https://we.example.com:443
max_age=3600
allow_credentials=true

[cors.additional_domain_1]
allowed_origin=https://additional_domain_1.example.com:443

[cors.additional_domain_2]
allowed_origin=https://additional_domain_2.example.com:443

For more information on Cross Origin Resource Sharing, please review the W3C
CORS specification [http://www.w3.org/TR/cors/].

Cleanup time for incomplete clusters

Sahara provides maximal time (in hours) for clusters allowed to be in states
other than “Active”, “Deleting” or “Error”. If a cluster is not in “Active”,
“Deleting” or “Error” state and last update of it was longer than
cleanup_time_for_incomplete_clusters hours ago then it will be deleted
automatically. You can enable this feature by adding appropriate config
property in the DEFAULT section (by default it set up to 0 value which
means that automatic clean up is disabled). For example, if you want cluster to
be deleted after 3 hours if it didn’t leave “Starting” state then you should
specify:

[DEFAULT]
cleanup_time_for_incomplete_clusters = 3

Security Group Rules Configuration

When auto_security_group is used, the amount of created security group rules
may be bigger than the default values configured in neutron.conf. Then the
default limit should be raised up to some bigger value which is proportional to
the number of cluster node groups. You can change it in neutron.conf file:

[quotas]
quota_security_group = 1000
quota_security_group_rule = 10000

Or you can execute openstack CLI command:

openstack quota set --secgroups 1000 --secgroup-rules 10000 $PROJECT_ID

Sahara Upgrade Guide

This page contains details about upgrading sahara between releases such as
configuration file updates, database migrations, and architectural changes.

Icehouse -> Juno

Main binary renamed to sahara-all

The All-In-One sahara binary has been renamed from sahara-api
to sahara-all. The new name should be used in all cases where the
All-In-One sahara is desired.

Authentication middleware changes

The custom auth_token middleware has been deprecated in favor of the keystone
middleware. This change requires an update to the sahara configuration file. To
update your configuration file you should replace the following parameters from
the [DEFAULT] section with the new parameters in the
[keystone_authtoken] section:

	Old parameter name
	New parameter name

	os_admin_username
	admin_user

	os_admin_password
	admin_password

	os_admin_tenant_name
	admin_tenant_name

Additionally, the parameters os_auth_protocol, os_auth_host,
and os_auth_port have been combined to create the auth_uri
and identity_uri parameters. These new parameters should be
full URIs to the keystone public and admin endpoints, respectively.

For more information about these configuration parameters please see
the Sahara Configuration Guide.

Database package changes

The oslo based code from sahara.openstack.common.db has been replaced by
the usage of the oslo.db package. This change does not require any
update to sahara’s configuration file.

Additionally, the usage of SQLite databases has been deprecated. Please use
MySQL or PostgreSQL databases for sahara. SQLite has been deprecated because it
does not, and is not going to, support the ALTER COLUMN and DROP COLUMN
commands required for migrations between versions. For more information please
see http://www.sqlite.org/omitted.html

Sahara integration into OpenStack Dashboard

The sahara dashboard package has been deprecated in the Juno release. The
functionality of the dashboard has been fully incorporated into the
OpenStack Dashboard. The sahara interface is available under the
“Project” -> “Data Processing” tab.

The Data processing service endpoints must be registered in the Identity
service catalog for the Dashboard to properly recognize and display
those user interface components. For more details on this process please see
registering Sahara in installation guide.

The
sahara-dashboard [https://git.openstack.org/cgit/openstack/sahara-dashboard]
project is now used solely to host sahara user interface integration tests.

Virtual machine user name changes

The HEAT infrastructure engine has been updated to use the same rules for
instance user names as the direct engine. In previous releases the user
name for instances created by sahara using HEAT was always ‘ec2-user’. As
of Juno, the user name is taken from the image registry as described in
the Registering an Image document.

This change breaks backward compatibility for clusters created using the HEAT
infrastructure engine prior to the Juno release. Clusters will continue to
operate, but we do not recommended using the scaling operations with them.

Anti affinity implementation changed

Starting with the Juno release the anti affinity feature is implemented
using server groups. From the user perspective there will be no
noticeable changes with this feature. Internally this change has
introduced the following behavior:

	Server group objects will be created for any clusters with anti affinity
enabled.

	Affected instances on the same host will not be allowed even if they
do not have common processes. Prior to Juno, instances with differing
processes were allowed on the same host. The new implementation
guarantees that all affected instances will be on different hosts
regardless of their processes.

The new anti affinity implementation will only be applied for new clusters.
Clusters created with previous versions will continue to operate under
the older implementation, this applies to scaling operations on these
clusters as well.

Juno -> Kilo

Sahara requires policy configuration

Sahara now requires a policy configuration file. The policy.json file
should be placed in the same directory as the sahara configuration file or
specified using the policy_file parameter. For more details about the
policy file please see the
policy section in the configuration guide.

Kilo -> Liberty

Direct engine deprecation

In the Liberty release the direct infrastructure engine has been deprecated and
the heat infrastructure engine is now default. This means, that it is
preferable to use heat engine instead now. In the Liberty release you can
continue to operate clusters with the direct engine (create, delete, scale).
Using heat engine only the delete operation is available on clusters that were
created by the direct engine. After the Liberty release the direct engine will
be removed, this means that you will only be able to delete clusters created
with the direct engine.

Policy namespace changed (policy.json)

The “data-processing:” namespace has been added to the beginning of the all
Sahara’s policy based actions, so, you need to update the policy.json file by
prepending all actions with “data-processing:”.

Liberty -> Mitaka

Direct engine is removed.

Mitaka -> Newton

Sahara CLI command is deprecated, please use OpenStack Client.

Note

Since Mitaka release sahara actively uses release notes so you can see all
required upgrade actions here: http://docs.openstack.org/releasenotes/sahara/

Sample sahara.conf file

This is an automatically generated sample of the sahara.conf file.

Getting Started

Clusters

A cluster deployed by sahara consists of node groups. Node groups vary by
their role, parameters and number of machines. The picture below
illustrates an example of a Hadoop cluster consisting of 3 node groups each
having a different role (set of processes).

[image: ../_images/hadoop-cluster-example.jpg]
Node group parameters include Hadoop parameters like io.sort.mb or
mapred.child.java.opts, and several infrastructure parameters like the
flavor for VMs or storage location (ephemeral drive or cinder volume).

A cluster is characterized by its node groups and its parameters. Like a node
group, a cluster has data processing framework and infrastructure parameters.
An example of a cluster-wide Hadoop parameter is dfs.replication. For
infrastructure, an example could be image which will be used to launch cluster
VMs.

Templates

In order to simplify cluster provisioning sahara employs the concept of
templates. There are two kinds of templates: node group templates and
cluster templates. The former is used to create node groups, the latter
- clusters. Essentially templates have the very same parameters as
corresponding entities. Their aim is to remove the burden of specifying all
of the required parameters each time a user wants to launch a cluster.

In the REST interface, templates have extended functionality. First you can
specify node-scoped parameters here, they will work as defaults for node
groups. Also with the REST interface, during cluster creation a user can
override template parameters for both cluster and node groups.

Provisioning Plugins

A provisioning plugin is a component responsible for provisioning a data
processing cluster. Generally each plugin is capable of provisioning a
specific data processing framework or Hadoop distribution. Also the plugin
can install management and/or monitoring tools for a cluster.

Since framework configuration parameters vary depending on the distribution
and the version, templates are always plugin and version specific. A template
cannot be used if the plugin, or framework, versions are different than the
ones they were created for.

You may find the list of available plugins on that page: Provisioning Plugins

Image Registry

OpenStack starts VMs based on a pre-built image with an installed OS. The image
requirements for sahara depend on the plugin and data processing framework
version. Some plugins require just a basic cloud image and will install the
framework on the VMs from scratch. Some plugins might require images with
pre-installed frameworks or Hadoop distributions.

The Sahara Image Registry is a feature which helps filter out images during
cluster creation. See Registering an Image for details on how to work
with Image Registry.

Features

Sahara has several interesting features. The full list could be found there:
Features Overview

Sahara (Data Processing) UI User Guide

This guide assumes that you already have the sahara service and Horizon
dashboard up and running. Don’t forget to make sure that sahara is
registered in Keystone. If you require assistance with that, please see the
installation guide.

The sections below give a panel by panel overview of setting up clusters
and running jobs. For a description of using the guided cluster and job tools,
look at Launching a cluster via the Cluster Creation Guide and
Running a job via the Job Execution Guide.

Launching a cluster via the sahara UI

Registering an Image

	Navigate to the “Project” dashboard, then the “Data Processing” tab, then
click on the “Clusters” panel and finally the “Image Registry” tab.

	From that page, click on the “Register Image” button at the top right

	Choose the image that you’d like to register with sahara

	Enter the username of the cloud-init user on the image

	Choose plugin and version to make the image available only for the intended
clusters

	Click the “Done” button to finish the registration

Create Node Group Templates

	Navigate to the “Project” dashboard, then the “Data Processing” tab, then
click on the “Clusters” panel and then the “Node Group Templates” tab.

	From that page, click on the “Create Template” button at the top right

	Choose your desired Plugin name and Version from the dropdowns and click
“Next”

	Give your Node Group Template a name (description is optional)

	Choose a flavor for this template (based on your CPU/memory/disk needs)

	Choose the storage location for your instance, this can be either “Ephemeral
Drive” or “Cinder Volume”. If you choose “Cinder Volume”, you will need to
add additional configuration

	Switch to the Node processes tab and choose which processes should be run
for all instances that are spawned from this Node Group Template

	Click on the “Create” button to finish creating your Node Group Template

Create a Cluster Template

	Navigate to the “Project” dashboard, then the “Data Processing” tab, then
click on the “Clusters” panel and finally the “Cluster Templates” tab.

	From that page, click on the “Create Template” button at the top right

	Choose your desired Plugin name and Version from the dropdowns and click
“Next”

	Under the “Details” tab, you must give your template a name

	Under the “Node Groups” tab, you should add one or more nodes that can be
based on one or more templates

	To do this, start by choosing a Node Group Template from the dropdown and
click the “+” button

	You can adjust the number of nodes to be spawned for this node group via
the text box or the “-” and “+” buttons

	Repeat these steps if you need nodes from additional node group templates

	Optionally, you can adjust your configuration further by using the “General
Parameters”, “HDFS Parameters” and “MapReduce Parameters” tabs

	If you have Designate DNS service you can choose the domain name in “DNS”
tab for internal and external hostname resolution

	Click on the “Create” button to finish creating your Cluster Template

Launching a Cluster

	Navigate to the “Project” dashboard, then the “Data Processing” tab, then
click on the “Clusters” panel and lastly, click on the “Clusters” tab.

	Click on the “Launch Cluster” button at the top right

	Choose your desired Plugin name and Version from the dropdowns and click
“Next”

	Give your cluster a name (required)

	Choose which cluster template should be used for your cluster

	Choose the image that should be used for your cluster (if you do not see any
options here, see Registering an Image above)

	Optionally choose a keypair that can be used to authenticate to your cluster
instances

	Click on the “Create” button to start your cluster

	Your cluster’s status will display on the Clusters table

	It will likely take several minutes to reach the “Active” state

Scaling a Cluster

	From the Data Processing/Clusters page (Clusters tab), click on the
“Scale Cluster” button of the row that contains the cluster that you want to
scale

	You can adjust the numbers of instances for existing Node Group Templates

	You can also add a new Node Group Template and choose a number of instances
to launch

	This can be done by selecting your desired Node Group Template from the
dropdown and clicking the “+” button

	Your new Node Group will appear below and you can adjust the number of
instances via the text box or the “+” and “-” buttons

	To confirm the scaling settings and trigger the spawning/deletion of
instances, click on “Scale”

Elastic Data Processing (EDP)

Data Sources

Data Sources are where the input and output from your jobs are housed.

	From the Data Processing/Jobs page (Data Sources tab), click on the
“Create Data Source” button at the top right

	Give your Data Source a name

	Enter the URL of the Data Source

	For a swift object, enter <container>/<path> (ie: mycontainer/inputfile).
sahara will prepend swift:// for you

	For an HDFS object, enter an absolute path, a relative path or a full URL:
	/my/absolute/path indicates an absolute path in the cluster HDFS

	my/path indicates the path /user/hadoop/my/path in the cluster HDFS
assuming the defined HDFS user is hadoop

	hdfs://host:port/path can be used to indicate any HDFS location

	Enter the username and password for the Data Source (also see
Additional Notes)

	Enter an optional description

	Click on “Create”

	Repeat for additional Data Sources

Job Binaries

Job Binaries are where you define/upload the source code (mains and libraries)
for your job.

	From the Data Processing/Jobs (Job Binaries tab), click on the
“Create Job Binary” button at the top right

	Give your Job Binary a name (this can be different than the actual filename)

	Choose the type of storage for your Job Binary

	For “swift”, enter the URL of your binary (<container>/<path>) as well as
the username and password (also see Additional Notes)

	For “Internal database”, you can choose from “Create a script” or “Upload
a new file”

	Enter an optional description

	Click on “Create”

	Repeat for additional Job Binaries

Job Templates (Known as “Jobs” in the API)

Job templates are where you define the type of job you’d like to run as well
as which “Job Binaries” are required.

	From the Data Processing/Jobs page (Job Templates tab),
click on the “Create Job Template” button at the top right

	Give your Job Template a name

	Choose the type of job you’d like to run

	Choose the main binary from the dropdown
	This is required for Hive, Pig, and Spark jobs

	Other job types do not use a main binary

	Enter an optional description for your Job Template

	Click on the “Libs” tab and choose any libraries needed by your job template
	MapReduce and Java jobs require at least one library

	Other job types may optionally use libraries

	Click on “Create”

Jobs (Known as “Job Executions” in the API)

Jobs are what you get by “Launching” a job template. You can monitor the
status of your job to see when it has completed its run

	From the Data Processing/Jobs page (Job Templates tab), find the row
that contains the job template you want to launch and click either
“Launch on New Cluster” or “Launch on Existing Cluster” the right side
of that row

	Choose the cluster (already running–see Launching a Cluster above) on
which you would like the job to run

	Choose the Input and Output Data Sources (Data Sources defined above)

	If additional configuration is required, click on the “Configure” tab

	Additional configuration properties can be defined by clicking on the “Add”
button

	An example configuration entry might be mapred.mapper.class for the Name
and org.apache.oozie.example.SampleMapper for the Value

	Click on “Launch”. To monitor the status of your job, you can navigate to
the Data Processing/Jobs panel and click on the Jobs tab.

	You can relaunch a Job from the Jobs page by using the
“Relaunch on New Cluster” or “Relaunch on Existing Cluster” links

	Relaunch on New Cluster will take you through the forms to start a new
cluster before letting you specify input/output Data Sources and job
configuration

	Relaunch on Existing Cluster will prompt you for input/output Data Sources
as well as allow you to change job configuration before launching the job

Example Jobs

There are sample jobs located in the sahara repository. In this section, we
will give a walkthrough on how to run those jobs via the Horizon UI. These
steps assume that you already have a cluster up and running (in the “Active”
state). You may want to clone into https://git.openstack.org/cgit/openstack/sahara-tests/
so that you will have all of the source code and inputs stored locally.

	Sample Pig job -
https://git.openstack.org/cgit/openstack/sahara-tests/tree/sahara_tests/scenario/defaults/edp-examples/edp-pig/cleanup-string/example.pig

	Load the input data file from
https://git.openstack.org/cgit/openstack/sahara-tests/tree/sahara_tests/scenario/defaults/edp-examples/edp-pig/cleanup-string/data/input
into swift
	Click on Project/Object Store/Containers and create a container with any
name (“samplecontainer” for our purposes here)

	Click on Upload Object and give the object a name
(“piginput” in this case)

	Navigate to Data Processing/Jobs/Data Sources, Click on Create Data Source
	Name your Data Source (“pig-input-ds” in this sample)

	Type = Swift, URL samplecontainer/piginput, fill-in the Source
username/password fields with your username/password and click “Create”

	Create another Data Source to use as output for the job
	Name = pig-output-ds, Type = Swift, URL = samplecontainer/pigoutput,
Source username/password, “Create”

	Store your Job Binaries in the sahara database
	Navigate to Data Processing/Jobs/Job Binaries, Click on Create Job Binary

	Name = example.pig, Storage type = Internal database, click Browse and
find example.pig wherever you checked out the sahara project
<sahara-tests root>/etc/edp-examples/edp-pig/trim-spaces

	Create another Job Binary: Name = edp-pig-udf-stringcleaner.jar,
Storage type = Internal database, click Browse and find
edp-pig-udf-stringcleaner.jar wherever you checked out the sahara project
<sahara-tests root>/sahara_tests/scenario/defaults/edp-examples/
edp-pig/cleanup-string/

	Create a Job Template
	Navigate to Data Processing/Jobs/Job Templates, Click on
Create Job Template

	Name = pigsample, Job Type = Pig, Choose “example.pig” as the main binary

	Click on the “Libs” tab and choose “edp-pig-udf-stringcleaner.jar”,
then hit the “Choose” button beneath the dropdown, then click
on “Create”

	Launch your job
	To launch your job from the Job Templates page, click on the down
arrow at the far right of the screen and choose
“Launch on Existing Cluster”

	For the input, choose “pig-input-ds”, for output choose “pig-output-ds”.
Also choose whichever cluster you’d like to run the job on

	For this job, no additional configuration is necessary, so you can just
click on “Launch”

	You will be taken to the “Jobs” page where you can see your job
progress through “PENDING, RUNNING, SUCCEEDED” phases

	When your job finishes with “SUCCEEDED”, you can navigate back to Object
Store/Containers and browse to the samplecontainer to see your output.
It should be in the “pigoutput” folder

	Sample Spark job -
https://git.openstack.org/cgit/openstack/sahara-tests/tree/sahara_tests/scenario/defaults/edp-examples/edp-spark
You can clone into https://git.openstack.org/cgit/openstack/sahara-tests/ for quicker
access to the files for this sample job.

	Store the Job Binary in the sahara database
	Navigate to Data Processing/Jobs/Job Binaries, Click on Create Job Binary

	Name = sparkexample.jar, Storage type = Internal database, Browse to the
location <sahara-tests root>/sahara_tests/scenario/defaults/
edp-examples/edp-spark/ and choose spark-wordcount.jar, Click “Create”

	Create a Job Template
	Name = sparkexamplejob, Job Type = Spark,
Main binary = Choose sparkexample.jar, Click “Create”

	Launch your job
	To launch your job from the Job Templates page, click on the
down arrow at the far right of the screen and choose
“Launch on Existing Cluster”

	Choose whichever cluster you’d like to run the job on

	Click on the “Configure” tab

	Set the main class to be: sahara.edp.spark.SparkWordCount

	Under Arguments, click Add and fill url for the input file,
once more click Add and fill url for the output file.

	Click on Launch

	You will be taken to the “Jobs” page where you can see your job
progress through “PENDING, RUNNING, SUCCEEDED” phases

	When your job finishes with “SUCCEEDED”, you can see your results in
your output file.

	The stdout and stderr files of the command used for executing your job
are located at /tmp/spark-edp/<name of job template>/<job id>
on Spark master node in case of Spark clusters, or on Spark JobHistory
node in other cases like Vanilla, CDH and so on.

Additional Notes

	Throughout the sahara UI, you will find that if you try to delete an object
that you will not be able to delete it if another object depends on it.
An example of this would be trying to delete a Job Template that has an
existing Job. In order to be able to delete that job, you would
first need to delete any Job Templates that relate to that job.

	In the examples above, we mention adding your username/password for the
swift Data Sources. It should be noted that it is possible to configure
sahara such that the username/password credentials are not required. For
more information on that, please refer to: Sahara Advanced
Configuration Guide

Launching a cluster via the Cluster Creation Guide

	Under the Data Processing group, choose “Clusters” and then click on the
“Clusters” tab. The “Cluster Creation Guide” button is above that table.
Click on it.

	Click on the “Choose Plugin” button then select the cluster type from the
Plugin Name dropdown and choose your target version. When done, click
on “Select” to proceed.

	Click on “Create a Master Node Group Template”. Give your template a name,
choose a flavor and choose which processes should run on nodes launched
for this node group. The processes chosen here should be things that are
more server-like in nature (namenode, oozieserver, spark master, etc).
Optionally, you can set other options here such as availability zone,
storage, security and process specific parameters. Click on “Create”
to proceed.

	Click on “Create a Worker Node Group Template”. Give your template a name,
choose a flavor and choose which processes should run on nodes launched
for this node group. Processes chosen here should be more worker-like in
nature (datanode, spark slave, task tracker, etc). Optionally, you can set
other options here such as availability zone, storage, security and process
specific parameters. Click on “Create” to proceed.

	Click on “Create a Cluster Template”. Give your template a name. Next,
click on the “Node Groups” tab and enter the count for each of the node
groups (these are pre-populated from steps 3 and 4). It would be common
to have 1 for the “master” node group type and some larger number of
“worker” instances depending on you desired cluster size. Optionally,
you can also set additional parameters for cluster-wide settings via
the other tabs on this page. Click on “Create” to proceed.

	Click on “Launch a Cluster”. Give your cluster a name and choose the image
that you want to use for all instances in your cluster. The cluster
template that you created in step 5 is already pre-populated. If you want
ssh access to the instances of your cluster, select a keypair from the
dropdown. Click on “Launch” to proceed. You will be taken to the Clusters
panel where you can see your cluster progress toward the Active state.

Running a job via the Job Execution Guide

	Under the Data Processing group, choose “Jobs” and then click on the
“Jobs” tab. The “Job Execution Guide” button is above that table. Click
on it.

	Click on “Select type” and choose the type of job that you want to run.

	If your job requires input/output data sources, you will have the option
to create them via the “Create a Data Source” button (Note: This button will
not be shown for job types that do not require data sources). Give your
data source a name and choose the type. If you have chosen swift, you
may also enter the username and password. Enter the URL for your data
source. For more details on what the URL should look like, see
Data Sources.

	Click on “Create a job template”. Give your job template a name.
Depending on the type of job that you’ve chosen, you may need to select
your main binary and/or additional libraries (available from the “Libs”
tab). If you have not yet uploaded the files to run your program, you
can add them via the “+” icon next to the “Choose a main binary” select box.

	Click on “Launch job”. Choose the active cluster where you want to run you
job. Optionally, you can click on the “Configure” tab and provide any
required configuration, arguments or parameters for your job. Click on
“Launch” to execute your job. You will be taken to the Jobs tab where
you can monitor the state of your job as it progresses.

Features Overview

This page highlights some of the most prominent features available in
sahara. The guidance provided here is primarily focused on the
runtime aspects of sahara. For discussions about configuring the sahara
server processes please see the Sahara Configuration Guide and
Sahara Advanced Configuration Guide.

Anti-affinity

One of the problems with running data processing applications on OpenStack
is the inability to control where an instance is actually running. It is
not always possible to ensure that two new virtual machines are started on
different physical machines. As a result, any replication within the cluster
is not reliable because all replicas may be co-located on one physical
machine. To remedy this, sahara provides the anti-affinity feature to
explicitly command all instances of the specified processes to spawn on
different Compute nodes. This is especially useful for Hadoop data node
processes to increase HDFS replica reliability.

Starting with the Juno release, sahara can create server groups with the
anti-affinity policy to enable this feature. Sahara creates one server
group per cluster and assigns all instances with affected processes to
this server group. Refer to the Nova documentation [http://docs.openstack.org/developer/nova] on how server groups
work.

This feature is supported by all plugins out of the box, and can be enabled
during the cluster template creation.

Block Storage support

OpenStack Block Storage (cinder) can be used as an alternative for
ephemeral drives on instances. Using Block Storage volumes increases the
reliability of data which is important for HDFS services.

A user can set how many volumes will be attached to each instance in a
node group and the size of each volume. All volumes are attached during
cluster creation and scaling operations.

If volumes are used for the HDFS storage it’s important to make sure that
the linear read-write operations as well as IOpS level are high enough to
handle the workload. Volumes placed on the same compute host provide a higher
level of performance.

In some cases cinder volumes can be backed by a distributed storage like Ceph.
In this type of installation it’s important to make sure that the network
latency and speed do not become a blocker for HDFS. Distributed storage
solutions usually provide their own replication mechanism. HDFS replication
should be disabled so that it does not generate redundant traffic across the
cloud.

Cluster scaling

Cluster scaling allows users to change the number of running instances
in a cluster without needing to recreate the cluster. Users may
increase or decrease the number of instances in node groups or add
new node groups to existing clusters. If a cluster fails to scale
properly, all changes will be rolled back.

Data locality

For optimal performance, it is best for data processing applications
to work on data local to the same rack, OpenStack Compute node, or
virtual machine. Hadoop supports a data locality feature and can schedule
jobs to task tracker nodes that are local for the input stream. In this
manner the task tracker nodes can communicate directly with the local
data nodes.

Sahara supports topology configuration for HDFS and Object Storage
data sources. For more information on configuring this option please
see the Data-locality configuration documentation.

Volume-to-instance locality

Having an instance and an attached volume on the same physical host can
be very helpful in order to achieve high-performance disk I/O operations.
To achieve this, sahara provides access to the Block Storage
volume instance locality functionality.

For more information on using volume instance locality with sahara,
please see the Volume instance locality configuration
documentation.

Distributed Mode

The Sahara Installation Guide suggests launching sahara in distributed mode
with sahara-api and sahara-engine processes potentially running on
several machines simultaneously. Running in distributed mode allows sahara to
offload intensive tasks to the engine processes while keeping the API
process free to handle requests.

For an expanded discussion of configuring sahara to run in distributed
mode please see the Distributed mode configuration documentation.

Hadoop HDFS and YARN High Availability

Currently HDFS and YARN HA are supported with the HDP 2.4 plugin and CDH 5.7
plugins.

Hadoop HDFS and YARN High Availability provide an architecture to ensure
that HDFS or YARN will continue to work in the result of an active namenode or
resourcemanager failure. They use 2 namenodes and 2 resourcemanagers in an
active/passive state to provide this availability.

In the HDP 2.4 plugin, the feature can be enabled through dashboard in the
Cluster Template creation form. High availability is achieved by using a set
of journalnodes, Zookeeper servers, and ZooKeeper Failover Controllers (ZKFC),
as well as additional configuration changes to HDFS and other services that
use HDFS.

In the CDH 5.7 plugin, HA for HDFS and YARN is enabled through adding several
HDFS_JOURNALNODE roles in the node group templates of cluster template.
The HDFS HA is enabled when HDFS_JOURNALNODE roles are added and the roles
setup meets below requirements:

	HDFS_JOURNALNODE number is odd, and at least 3.

	Zookeeper is enabled.

	NameNode and SecondaryNameNode are on different physical hosts by setting
anti-affinity.

	Cluster has both ResourceManager and StandByResourceManager.

In this case, the original SecondrayNameNode node will be used as the
Standby NameNode.

Networking support

Sahara supports both the nova-network and neutron implementations of
OpenStack Networking. By default sahara is configured to behave as if
the nova-network implementation is available. For OpenStack installations
that are using the neutron project please see Networking configuration.

Object Storage support

Sahara can use OpenStack Object Storage (swift) to store job binaries and data
sources utilized by its job executions and clusters. In order to
leverage this support within Hadoop, including using Object Storage
for data sources for EDP, Hadoop requires the application of
a patch. For additional information about enabling this support,
including patching Hadoop and configuring sahara, please refer to
the Swift Integration documentation.

Shared Filesystem support

Sahara can also use NFS shares through the OpenStack Shared Filesystem service
(manila) to store job binaries and data sources. See Elastic Data Processing (EDP) for more
information on this feature.

Orchestration support

Sahara may use the
OpenStack Orchestration engine [https://wiki.openstack.org/wiki/Heat]
(heat) to provision nodes for clusters. For more information about
enabling Orchestration usage in sahara please see
Orchestration configuration.

DNS support

Sahara can resolve hostnames of cluster instances by using DNS. For this Sahara
uses designate. For additional details see Sahara Advanced Configuration Guide.

Kerberos support

You can protect your HDP or CDH cluster using MIT Kerberos security. To get
more details about this, please, see documentation for the appropriate plugin.

Plugin Capabilities

The following table provides a plugin capability matrix:

	Feature
	Plugin

	Vanilla
	HDP
	Cloudera
	Spark

	Nova and Neutron network
	x
	x
	x
	x

	Cluster Scaling
	x
	x
	x
	x

	Swift Integration
	x
	x
	x
	x

	Cinder Support
	x
	x
	x
	x

	Data Locality
	x
	x
	x
	x

	DNS
	x
	x
	x
	x

	Kerberos
	
	

	x
	x
	
	

	HDFS HA
	
	

	x
	x
	
	

	EDP
	x
	x
	x
	x

Security group management

Security groups are sets of IP filter rules that are applied to an instance’s
networking. They are project specified, and project members can edit the
default rules for their group and add new rules sets. All projects have a
“default” security group, which is applied to instances that have no other
security group defined. Unless changed, this security group denies all incoming
traffic.

Sahara allows you to control which security groups will be used for created
instances. This can be done by providing the security_groups parameter for
the node group or node group template. The default for this option is an
empty list, which will result in the default project security group being
used for the instances.

Sahara may also create a security group for instances in the node group
automatically. This security group will only contain open ports for required
instance processes and the sahara engine. This option is useful
for development and for when your installation is secured from outside
environments. For production environments we recommend controlling the
security group policy manually.

Shared and protected resources support

Sahara allows you to create resources that can be shared across projects and
protected from modifications.

To provide this feature all sahara objects that can be accessed through
REST API have is_public and is_protected boolean fields. They can be
initially created with enabled is_public and is_protected
parameters or these parameters can be updated after creation. Both fields are
set to False by default.

If some object has its is_public field set to True, it means that it’s
visible not only from the project in which it was created, but from any other
projects too.

If some object has its is_protected field set to True, it means that it
can not be modified (updated, scaled, canceled or deleted) unless this field
is set to False.

Public objects created in one project can be used from other projects (for
example, a cluster can be created from a public cluster template which is
created in another project), but modification operations are possible only from
the project in which object was created.

Data source placeholders support

Sahara supports special strings that can be used in data source URLs. These
strings will be replaced with appropriate values during job execution which
allows the use of the same data source as an output multiple times.

There are 2 types of string currently supported:

	%JOB_EXEC_ID% - this string will be replaced with the job execution ID.

	%RANDSTR(len)% - this string will be replaced with random string of
lowercase letters of length len. len must be less than 1024.

After placeholders are replaced, the real URLs are stored in the
data_source_urls field of the job execution object. This is used later to
find objects created by a particular job run.

Registering an Image

Sahara deploys a cluster of machines using images stored in Glance.

Each plugin has its own requirements on the image contents (see specific plugin
documentation for details). Two general requirements for an image are to have
the cloud-init and the ssh-server packages installed.

Sahara requires the images to be registered in the Sahara Image Registry.
A registered image must have two properties set:

	username - a name of the default cloud-init user.

	tags - certain tags mark image to be suitable for certain plugins. The tags
depend on the plugin used, you can find required tags in the plugin’s
documentations.

The default username specified for these images is different
for each distribution:

	OS
	username

	Ubuntu 12,14
	ubuntu

	Fedora
	fedora

	CentOS 6.x
	cloud-user

	CentOS 7.x
	centos

Provisioning Plugins

This page lists all available provisioning plugins. In general a plugin
enables sahara to deploy a specific data processing framework (for example,
Hadoop) or distribution, and allows configuration of topology and
management/monitoring tools.

	Vanilla Plugin - deploys Vanilla Apache Hadoop

	Ambari Plugin - deploys Hortonworks Data Platform

	Spark Plugin - deploys Apache Spark with Cloudera HDFS

	MapR Distribution Plugin - deploys MapR plugin with MapR File System

	Cloudera Plugin - deploys Cloudera Hadoop

Managing plugins

Since the Newton release a project admin can configure plugins by specifying
additional values for plugin’s labels.

To disable a plugin (Vanilla Apache Hadoop, for example), the admin
can run the following command:

cat update_configs.json
{
 "plugin_labels": {
 "enabled": {
 "status": true
 }
 }
}
openstack dataprocessing plugin update vanilla update_configs.json

Additionally, specific versions can be disabled by the following command:

cat update_configs.json
{
 "version_labels": {
 "2.7.1": {
 "enabled": {
 "status": true
 }
 }
 }
}
openstack dataprocessing plugin update vanilla update_configs.json

Finally, to see all labels of a specific plugin and to see the current status
of the plugin (is it stable or not, deprecation status) the following command
can be executed from the CLI:

openstack dataprocessing plugin show vanilla

The same actions are available from UI respectively.

Vanilla Plugin

The vanilla plugin is a reference implementation which allows users to operate
a cluster with Apache Hadoop.

Since the Newton release Spark is integrated into the Vanilla plugin so you
can launch Spark jobs on a Vanilla cluster.

For cluster provisioning prepared images should be used. They already have
Apache Hadoop 2.7.1 installed.

You may build images by yourself using Building Images for Vanilla Plugin or you could
download prepared images from http://sahara-files.mirantis.com/images/upstream

Vanilla plugin requires an image to be tagged in Sahara Image Registry with
two tags: ‘vanilla’ and ‘<hadoop version>’ (e.g. ‘2.7.1’).

The default username specified for these images is different
for each distribution:

	OS
	username

	Ubuntu 14
	ubuntu

	Fedora 20
	fedora

	CentOS 6
	cloud-user

	CentOS 7
	centos

Cluster Validation

When user creates or scales a Hadoop cluster using a Vanilla plugin,
the cluster topology requested by user is verified for consistency.

Currently there are the following limitations in cluster topology for Vanilla
plugin:

For Vanilla Hadoop version 2.x.x:

	Cluster must contain exactly one namenode

	Cluster can contain at most one resourcemanager

	Cluster can contain at most one secondary namenode

	Cluster can contain at most one historyserver

	Cluster can contain at most one oozie and this process is also required
for EDP

	Cluster can’t contain oozie without resourcemanager and without
historyserver

	Cluster can’t have nodemanager nodes if it doesn’t have resourcemanager

	Cluster can have at most one hiveserver node.

	Cluster can have at most one spark history server and this process is also
required for Spark EDP (Spark is available since the Newton release).

Ambari Plugin

The Ambari sahara plugin provides a way to provision
clusters with Hortonworks Data Platform on OpenStack using templates in a
single click and in an easily repeatable fashion. The sahara controller serves
as the glue between Hadoop and OpenStack. The Ambari plugin mediates between
the sahara controller and Apache Ambari in order to deploy and configure Hadoop
on OpenStack. Core to the HDP Plugin is Apache Ambari
which is used as the orchestrator for deploying HDP on OpenStack. The Ambari
plugin uses Ambari Blueprints for cluster provisioning.

Apache Ambari Blueprints

Apache Ambari Blueprints is a portable document definition, which provides a
complete definition for an Apache Hadoop cluster, including cluster topology,
components, services and their configurations. Ambari Blueprints can be
consumed by the Ambari plugin to instantiate a Hadoop cluster on OpenStack. The
benefits of this approach is that it allows for Hadoop clusters to be
configured and deployed using an Ambari native format that can be used with as
well as outside of OpenStack allowing for clusters to be re-instantiated in a
variety of environments.

Images

The sahara Ambari plugin is using minimal (operating system only) images.

For more information about Ambari images, refer to
https://github.com/openstack/sahara-image-elements.

You could download well tested and up-to-date prepared images from
http://sahara-files.mirantis.com/images/upstream/

HDP plugin requires an image to be tagged in sahara Image Registry with two
tags: ‘ambari’ and ‘<plugin version>’ (e.g. ‘2.5’).

Also in the Image Registry you will need to specify username for an image.
The username specified should be ‘cloud-user’ in case of CentOS 6.x image,
‘centos’ for CentOS 7 images and ‘ubuntu’ for Ubuntu images.

High Availability for HDFS and YARN

High Availability (Using the Quorum Journal Manager) can be
deployed automatically with the Ambari plugin. You can deploy High Available
cluster through UI by selecting NameNode HA and/or ResourceManager HA
options in general configs of cluster template.

The NameNode High Availability is deployed using 2 NameNodes, one active and
one standby. The NameNodes use a set of JournalNodes and Zookepeer Servers to
ensure the necessary synchronization. In case of ResourceManager HA 2
ResourceManagers should be enabled in addition.

A typical Highly available Ambari cluster uses 2 separate NameNodes, 2 separate
ResourceManagers and at least 3 JournalNodes and at least 3 Zookeeper Servers.

HDP Version Support

The HDP plugin currently supports deployment of HDP 2.3, 2.4 and 2.5.

Cluster Validation

Prior to Hadoop cluster creation, the HDP plugin will perform the following
validation checks to ensure a successful Hadoop deployment:

	Ensure the existence of Ambari Server process in the cluster;

	Ensure the existence of a NameNode, Zookeeper, ResourceManagers processes
HistoryServer and App TimeLine Server in the cluster

Enabling Kerberos security for cluster

If you want to protect your clusters using MIT Kerberos security you have to
complete a few steps below.

	If you would like to create a cluster protected by Kerberos security you
just need to enable Kerberos by checkbox in the General Parameters
section of the cluster configuration. If you prefer to use the OpenStack CLI
for cluster creation, you have to put the data below in the
cluster_configs section:

"cluster_configs": {
 "Enable Kerberos Security": true,
}

Sahara in this case will correctly prepare KDC server and will create
principals along with keytabs to enable authentication for Hadoop services.

	Ensure that you have the latest hadoop-openstack jar file distributed
on your cluster nodes. You can download one at
http://tarballs.openstack.org/sahara/dist/

	Sahara will create principals along with keytabs for system users
like oozie, hdfs and spark so that you will not have to
perform additional auth operations to execute your jobs on top of the
cluster.

Spark Plugin

The Spark plugin for sahara provides a way to provision Apache Spark clusters
on OpenStack in a single click and in an easily repeatable fashion.

Currently Spark is installed in standalone mode, with no YARN or Mesos
support.

Images

For cluster provisioning, prepared images should be used. The Spark plugin
has been developed and tested with the images generated by
sahara-image-elements:

	https://github.com/openstack/sahara-image-elements

The latest Ubuntu images generated by sahara-image-elements have Cloudera
CDH 5.4.0 HDFS and Apache Spark installed. A prepared image for Spark can be
found at the following location:

	http://sahara-files.mirantis.com/images/upstream/

The Spark plugin requires an image to be tagged in the sahara image registry
with two tags: ‘spark’ and ‘<Spark version>’ (e.g. ‘1.6.0’).

Also you should specify the username of the default cloud-user used in the
image. For the images available at the URLs listed above and for all the ones
generated with the DIB it is ubuntu.

Note that the Spark cluster is deployed using the scripts available in the
Spark distribution, which allow the user to start all services (master and
slaves), stop all services and so on. As such (and as opposed to CDH HDFS
daemons), Spark is not deployed as a standard Ubuntu service and if the
virtual machines are rebooted, Spark will not be restarted.

Spark configuration

Spark needs few parameters to work and has sensible defaults. If needed they
can be changed when creating the sahara cluster template. No node group
options are available.

Once the cluster is ready, connect with ssh to the master using the ubuntu
user and the appropriate ssh key. Spark is installed in /opt/spark and
should be completely configured and ready to start executing jobs. At the
bottom of the cluster information page from the OpenStack dashboard, a link to
the Spark web interface is provided.

Cluster Validation

When a user creates an Hadoop cluster using the Spark plugin, the cluster
topology requested by user is verified for consistency.

Currently there are the following limitations in cluster topology for the
Spark plugin:

	Cluster must contain exactly one HDFS namenode

	Cluster must contain exactly one Spark master

	Cluster must contain at least one Spark slave

	Cluster must contain at least one HDFS datanode

The tested configuration co-locates the NameNode with the master and a
DataNode with each slave to maximize data locality.

Cloudera Plugin

The Cloudera plugin is a Sahara plugin which allows the user to
deploy and operate a cluster with Cloudera Manager.

The Cloudera plugin is enabled in Sahara by default. You can manually
modify the Sahara configuration file (default /etc/sahara/sahara.conf) to
explicitly enable or disable it in “plugins” line.

You need to build images using Building Images for Cloudera Plugin to produce images used
to provision cluster or you could download prepared images from
http://sahara-files.mirantis.com/images/upstream/
They already have Cloudera Express installed (version 5.0.0, 5.3.0, 5.4.0,
5.5.0, 5.7.x and 5.9.x).

The cloudera plugin requires an image to be tagged in Sahara Image Registry
with two tags: ‘cdh’ and ‘<cloudera version>’ (e.g. ‘5’, ‘5.3.0’, ‘5.4.0’,
‘5.5.0’, ‘5.7.0’, ‘5.9.0’ or ‘5.9.1’, here ‘5’ stands for ‘5.0.0’).

The default username specified for these images is different for each
distribution:

for 5.0.0, 5.3.0 and 5.4.0 version:

	OS
	username

	Ubuntu 12.04
	ubuntu

	CentOS 6.6
	cloud-user

for 5.5.0 and higher versions:

	OS
	username

	Ubuntu 14.04
	ubuntu

	CentOS 6.6
	cloud-user

	CentOS 7
	centos

Services Supported

Currently below services are supported in both versions of Cloudera plugin:
HDFS, Oozie, YARN, Spark, Zookeeper, Hive, Hue, HBase. 5.3.0 version of
Cloudera Plugin also supported following services: Impala, Flume, Solr, Sqoop,
and Key-value Store Indexer. In version 5.4.0 KMS service support was added
based on version 5.3.0. Kafka 2.0.2 was added for CDH 5.5 and higher.

Note

Sentry service is enabled in Cloudera plugin. However, as we do not enable
Kerberos authentication in the cluster for CDH version < 5.5 (which is
required for Sentry functionality) then using Sentry service will not
really take any effect, and other services depending on Sentry will not do
any authentication too.

High Availability Support

Currently HDFS NameNode High Availability is supported beginning with
Cloudera 5.4.0 version. You can refer to Features Overview for the detail
info.

YARN ResourceManager High Availability is supported beginning with Cloudera
5.4.0 version. This feature adds redundancy in the form of an Active/Standby
ResourceManager pair to avoid the failure of single RM. Upon failover, the
Standby RM become Active so that the applications can resume from their last
check-pointed state.

Cluster Validation

When the user performs an operation on the cluster using a Cloudera plugin, the
cluster topology requested by the user is verified for consistency.

The following limitations are required in the cluster topology for all
cloudera plugin versions:

	Cluster must contain exactly one manager.

	Cluster must contain exactly one namenode.

	Cluster must contain exactly one secondarynamenode.

	Cluster must contain at least dfs_replication datanodes.

	Cluster can contain at most one resourcemanager and this process is also
required by nodemanager.

	Cluster can contain at most one jobhistory and this process is also
required for resourcemanager.

	Cluster can contain at most one oozie and this process is also required
for EDP.

	Cluster can’t contain oozie without datanode.

	Cluster can’t contain oozie without nodemanager.

	Cluster can’t contain oozie without jobhistory.

	Cluster can’t contain hive on the cluster without the following services:
metastore, hive server, webcat and resourcemanager.

	Cluster can contain at most one hue server.

	Cluster can’t contain hue server without hive service and oozie.

	Cluster can contain at most one spark history server.

	Cluster can’t contain spark history server without resourcemanager.

	Cluster can’t contain hbase master service without at least one zookeeper
and at least one hbase regionserver.

	Cluster can’t contain hbase regionserver without at least one hbase maser.

In case of 5.3.0, 5.4.0, 5.5.0, 5.7.x or 5.9.x version of Cloudera Plugin
there are few extra limitations in the cluster topology:

	Cluster can’t contain flume without at least one datanode.

	Cluster can contain at most one sentry server service.

	Cluster can’t contain sentry server service without at least one zookeeper
and at least one datanode.

	Cluster can’t contain solr server without at least one zookeeper and at
least one datanode.

	Cluster can contain at most one sqoop server.

	Cluster can’t contain sqoop server without at least one datanode,
nodemanager and jobhistory.

	Cluster can’t contain hbase indexer without at least one datanode,
zookeeper, solr server and hbase master.

	Cluster can contain at most one impala catalog server.

	Cluster can contain at most one impala statestore.

	Cluster can’t contain impala catalogserver without impala statestore,
at least one impalad service, at least one datanode, and metastore.

	If using Impala, the daemons must be installed on every datanode.

In case of version 5.5.0, 5.7.x or 5.9.x of Cloudera Plugin additional
services in the cluster topology are available:

	Cluster can have the kafka service and several kafka brokers.

Enabling Kerberos security for cluster

If you want to protect your clusters using MIT Kerberos security you have to
complete a few steps below.

	If you would like to create a cluster protected by Kerberos security you
just need to enable Kerberos by checkbox in the General Parameters
section of the cluster configuration. If you prefer to use the OpenStack CLI
for cluster creation, you have to put the data below in the
cluster_configs section:

"cluster_configs": {
 "Enable Kerberos Security": true,
}

Sahara in this case will correctly prepare KDC server and will create
principals along with keytabs to enable authentication for Hadoop services.

	Ensure that you have the latest hadoop-openstack jar file distributed
on your cluster nodes. You can download one at
http://tarballs.openstack.org/sahara/dist/

	Sahara will create principals along with keytabs for system users
like hdfs and spark so that you will not have to
perform additional auth operations to execute your jobs on top of the
cluster.

MapR Distribution Plugin

The MapR Sahara plugin allows to provision MapR clusters on
OpenStack in an easy way and do it, quickly, conveniently and simply.

Operation

The MapR Plugin performs the following four primary functions during cluster
creation:

	MapR components deployment - the plugin manages the deployment of the
required software to the target VMs

	Services Installation - MapR services are installed according to provided
roles list

	Services Configuration - the plugin combines default settings with user
provided settings

	Services Start - the plugin starts appropriate services according to
specified roles

Images

The Sahara MapR plugin can make use of either minimal (operating system only)
images or pre-populated MapR images. The base requirement for both is that the
image is cloud-init enabled and contains a supported operating system (see
http://maprdocs.mapr.com/home/InteropMatrix/r_os_matrix.html).

The advantage of a pre-populated image is that provisioning time is reduced, as
packages do not need to be downloaded which make up the majority of the time
spent in the provisioning cycle. In addition, provisioning large clusters will
put a burden on the network as packages for all nodes need to be downloaded
from the package repository.

For more information about MapR images, refer to
https://github.com/openstack/sahara-image-elements.

There are VM images provided for use with the MapR Plugin, that can also be
built using the tools available in sahara-image-elements:
https://s3-us-west-2.amazonaws.com/sahara-images/index.html

MapR plugin needs an image to be tagged in Sahara Image Registry with
two tags: ‘mapr’ and ‘<MapR version>’ (e.g. ‘5.2.0.mrv2’).

The default username specified for these images is different for each
distribution:

	OS
	username

	Ubuntu 14
	ubuntu

	CentOS 6
	cloud-user

	CentOS 7
	centos

Hadoop Version Support

The MapR plugin currently supports Hadoop 2.7.0 (5.2.0.mrv2).

Cluster Validation

When the user creates or scales a Hadoop cluster using a mapr plugin, the
cluster topology requested by the user is verified for consistency.

Every MapR cluster must contain:

	at least 1 CLDB process

	exactly 1 Webserver process

	odd number of ZooKeeper processes but not less than 1

	FileServer process on every node

	at least 1 ephemeral drive (then you need to specify the ephemeral drive in
the flavor not on the node group template creation) or 1 Cinder volume
per instance

Every Hadoop cluster must contain exactly 1 Oozie process

Every MapReduce v1 cluster must contain:

	at least 1 JobTracker process

	at least 1 TaskTracker process

Every MapReduce v2 cluster must contain:

	exactly 1 ResourceManager process

	exactly 1 HistoryServer process

	at least 1 NodeManager process

Every Spark cluster must contain:

	exactly 1 Spark Master process

	exactly 1 Spark HistoryServer process

	at least 1 Spark Slave (worker) process

HBase service is considered valid if:

	cluster has at least 1 HBase-Master process

	cluster has at least 1 HBase-RegionServer process

Hive service is considered valid if:

	cluster has exactly 1 HiveMetastore process

	cluster has exactly 1 HiveServer2 process

Hue service is considered valid if:

	cluster has exactly 1 Hue process

	Hue process resides on the same node as HttpFS process

HttpFS service is considered valid if cluster has exactly 1 HttpFS process

Sqoop service is considered valid if cluster has exactly 1 Sqoop2-Server
process

The MapR Plugin

For more information, please contact MapR.

Elastic Data Processing (EDP)

Overview

Sahara’s Elastic Data Processing facility or EDP allows the execution
of jobs on clusters created from sahara. EDP supports:

	Hive, Pig, MapReduce, MapReduce.Streaming, Java, and Shell job types on
Hadoop clusters

	Spark jobs on Spark standalone clusters, MapR (v5.0.0 - v5.2.0) clusters,
Vanilla clusters (v2.7.1) and CDH clusters (v5.3.0 or higher).

	storage of job binaries in the OpenStack Object Storage service (swift),
the OpenStack Shared file systems service (manila), or sahara’s own
database

	access to input and output data sources in
	HDFS for all job types

	swift for all types excluding Hive

	manila (NFS shares only) for all types excluding Pig

	configuration of jobs at submission time

	execution of jobs on existing clusters or transient clusters

Interfaces

The EDP features can be used from the sahara web UI which is described in the
Sahara (Data Processing) UI User Guide.

The EDP features also can be used directly by a client through the
REST api [http://developer.openstack.org/api-ref/data-processing/]

EDP Concepts

Sahara EDP uses a collection of simple objects to define and execute jobs.
These objects are stored in the sahara database when they are created,
allowing them to be reused. This modular approach with database persistence
allows code and data to be reused across multiple jobs.

The essential components of a job are:

	executable code to run

	input and output data paths, as needed for the job

	any additional configuration values needed for the job run

These components are supplied through the objects described below.

Job Binaries

A Job Binary object stores a URL to a single script or Jar file and
any credentials needed to retrieve the file. The file itself may be stored
in the sahara internal database (but it is deprecated now), in swift,
or in manila.

deprecated: Files in the sahara database are stored as raw bytes in a
Job Binary Internal object. This object’s sole purpose is to store a
file for later retrieval. No extra credentials need to be supplied for files
stored internally.

Sahara requires credentials (username and password) to access files stored in
swift unless swift proxy users are configured as described in
Sahara Advanced Configuration Guide. The swift service must be
running in the same OpenStack installation referenced by sahara.

To reference a binary file stored in manila, create the job binary with the
URL manila://{share_id}/{path}. This assumes that you have already stored
that file in the appropriate path on the share. The share will be
automatically mounted to any cluster nodes which require access to the file,
if it is not mounted already.

There is a configurable limit on the size of a single job binary that may be
retrieved by sahara. This limit is 5MB and may be set with the
job_binary_max_KB setting in the sahara.conf configuration file.

Jobs

A Job object specifies the type of the job and lists all of the
individual Job Binary objects that are required for execution. An individual
Job Binary may be referenced by multiple Jobs. A Job object specifies a main
binary and/or supporting libraries depending on its type:

	Job type
	Main binary
	Libraries

	Hive
	required
	optional

	Pig
	required
	optional

	MapReduce
	not used
	required

	MapReduce.Streaming
	not used
	optional

	Java
	not used
	required

	Shell
	required
	optional

	Spark
	required
	optional

	Storm
	required
	not used

	Storm Pyelus
	required
	not used

Data Sources

A Data Source object stores a URL which designates the location of
input or output data and any credentials needed to access the location.

Sahara supports data sources in swift. The swift service must be running in
the same OpenStack installation referenced by sahara.

Sahara also supports data sources in HDFS. Any HDFS instance running on a
sahara cluster in the same OpenStack installation is accessible without
manual configuration. Other instances of HDFS may be used as well provided
that the URL is resolvable from the node executing the job.

Sahara supports data sources in manila as well. To reference a path on an NFS
share as a data source, create the data source with the URL
manila://{share_id}/{path}. As in the case of job binaries, the specified
share will be automatically mounted to your cluster’s nodes as needed to
access the data source.

Some job types require the use of data source objects to specify input and
output when a job is launched. For example, when running a Pig job the UI will
prompt the user for input and output data source objects.

Other job types like Java or Spark do not require the user to specify data
sources. For these job types, data paths are passed as arguments. For
convenience, sahara allows data source objects to be referenced by name or id.
The section Using Data Source References as Arguments gives further
details.

Job Execution

Job objects must be launched or executed in order for them to run on the
cluster. During job launch, a user specifies execution details including data
sources, configuration values, and program arguments. The relevant details
will vary by job type. The launch will create a Job Execution object in
sahara which is used to monitor and manage the job.

To execute Hadoop jobs, sahara generates an Oozie workflow and submits it to
the Oozie server running on the cluster. Familiarity with Oozie is not
necessary for using sahara but it may be beneficial to the user. A link to
the Oozie web console can be found in the sahara web UI in the cluster
details.

For Spark jobs, sahara uses the spark-submit shell script and executes the
Spark job from the master node in case of Spark cluster and from the Spark
Job History server in other cases. Logs of spark jobs run by sahara can be
found on this node under the /tmp/spark-edp directory.

General Workflow

The general workflow for defining and executing a job in sahara is essentially
the same whether using the web UI or the REST API.

	Launch a cluster from sahara if there is not one already available

	Create all of the Job Binaries needed to run the job, stored in the sahara
database, in swift, or in manila
	When using the REST API and internal storage of job binaries, the Job
Binary Internal objects must be created first

	Once the Job Binary Internal objects are created, Job Binary objects may
be created which refer to them by URL

	Create a Job object which references the Job Binaries created in step 2

	Create an input Data Source which points to the data you wish to process

	Create an output Data Source which points to the location for output data

	Create a Job Execution object specifying the cluster and Job object plus
relevant data sources, configuration values, and program arguments
	When using the web UI this is done with the
Launch On Existing Cluster or
Launch on New Cluster buttons on the Jobs tab

	When using the REST API this is done via the /jobs/<job_id>/execute
method

The workflow is simpler when using existing objects. For example, to
construct a new job which uses existing binaries and input data a user may
only need to perform steps 3, 5, and 6 above. Of course, to repeat the same
job multiple times a user would need only step 6.

Specifying Configuration Values, Parameters, and Arguments

Jobs can be configured at launch. The job type determines the kinds of values
that may be set:

	Job type
	Configuration
Values
	Parameters
	Arguments

	Hive
	Yes
	Yes
	No

	Pig
	Yes
	Yes
	Yes

	MapReduce
	Yes
	No
	No

	MapReduce.Streaming
	Yes
	No
	No

	Java
	Yes
	No
	Yes

	Shell
	Yes
	Yes
	Yes

	Spark
	Yes
	No
	Yes

	Storm
	Yes
	No
	Yes

	Storm Pyelus
	Yes
	No
	Yes

	Configuration values are key/value pairs.
	The EDP configuration values have names beginning with edp. and are
consumed by sahara

	Other configuration values may be read at runtime by Hadoop jobs

	Currently additional configuration values are not available to Spark jobs
at runtime

	Parameters are key/value pairs. They supply values for the Hive and
Pig parameter substitution mechanisms. In Shell jobs, they are passed as
environment variables.

	Arguments are strings passed as command line arguments to a shell or
main program

These values can be set on the Configure tab during job launch
through the web UI or through the job_configs parameter when using the
/jobs/<job_id>/execute REST method.

In some cases sahara generates configuration values or parameters
automatically. Values set explicitly by the user during launch will override
those generated by sahara.

Using Data Source References as Arguments

Sometimes it’s necessary or desirable to pass a data path as an argument to a
job. In these cases, a user may simply type out the path as an argument when
launching a job. If the path requires credentials, the user can manually add
the credentials as configuration values. However, if a data source object has
been created that contains the desired path and credentials there is no need
to specify this information manually.

As a convenience, sahara allows data source objects to be referenced by name
or id in arguments, configuration values, or parameters. When the job is
executed, sahara will replace the reference with the path stored in the data
source object and will add any necessary credentials to the job configuration.
Referencing an existing data source object is much faster than adding this
information by hand. This is particularly useful for job types like Java or
Spark that do not use data source objects directly.

There are two job configuration parameters that enable data source references.
They may be used with any job type and are set on the Configuration tab
when the job is launched:

	edp.substitute_data_source_for_name (default False) If set to
True, causes sahara to look for data source object name references in
configuration values, arguments, and parameters when a job is launched. Name
references have the form datasource://name_of_the_object.

For example, assume a user has a WordCount application that takes an input
path as an argument. If there is a data source object named my_input, a
user may simply set the edp.substitute_data_source_for_name
configuration parameter to True and add datasource://my_input as an
argument when launching the job.

	edp.substitute_data_source_for_uuid (default False) If set to
True, causes sahara to look for data source object ids in configuration
values, arguments, and parameters when a job is launched. A data source
object id is a uuid, so they are unique. The id of a data source object is
available through the UI or the sahara command line client. A user may
simply use the id as a value.

Creating an Interface for Your Job

In order to better document your job for cluster operators (or for yourself
in the future), sahara allows the addition of an interface (or method
signature) to your job template. A sample interface for the Teragen Hadoop
example might be:

	Name
	Mapping
Type
	Location
	Value
Type
	Required
	Default

	Example
Class
	args
	0
	string
	false
	teragen

	Rows
	args
	1
	number
	true
	unset

	Output
Path
	args
	2
	data_source
	false
	hdfs://ip:port/path

	Mapper
Count
	configs
	mapred.
map.tasks
	number
	false
	unset

A “Description” field may also be added to each interface argument.

To create such an interface via the REST API, provide an “interface” argument,
the value of which consists of a list of JSON objects, as below:

[
 {
 "name": "Example Class",
 "description": "Indicates which example job class should be used.",
 "mapping_type": "args",
 "location": "0",
 "value_type": "string",
 "required": false,
 "default": "teragen"
 },
]

Creating this interface would allow you to specify a configuration for any
execution of the job template by passing an “interface” map similar to:

{
 "Rows": "1000000",
 "Mapper Count": "3",
 "Output Path": "hdfs://mycluster:8020/user/myuser/teragen-output"
}

The specified arguments would be automatically placed into the args, configs,
and params for the job, according to the mapping type and location fields of
each interface argument. The final job_configs map would be:

{
 "job_configs": {
 "configs":
 {
 "mapred.map.tasks": "3"
 },
 "args":
 [
 "teragen",
 "1000000",
 "hdfs://mycluster:8020/user/myuser/teragen-output"
]
 }
}

Rules for specifying an interface are as follows:

	Mapping Type must be one of configs, params, or args. Only types
supported for your job type are allowed (see above.)

	Location must be a string for configs and params, and an integer for
args. The set of args locations must be an unbroken series of
integers starting from 0.

	Value Type must be one of string, number, or data_source. Data
sources may be passed as UUIDs or as valid paths (see above.) All values
should be sent as JSON strings. (Note that booleans and null values are
serialized differently in different languages. Please specify them as a
string representation of the appropriate constants for your data processing
engine.)

	args that are not required must be given a default value.

The additional one-time complexity of specifying an interface on your template
allows a simpler repeated execution path, and also allows us to generate a
customized form for your job in the Horizon UI. This may be particularly
useful in cases in which an operator who is not a data processing job
developer will be running and administering the jobs.

Generation of Swift Properties for Data Sources

If swift proxy users are not configured (see
Sahara Advanced Configuration Guide) and a job is run with data
source objects containing swift paths, sahara will automatically generate
swift username and password configuration values based on the credentials
in the data sources. If the input and output data sources are both in swift,
it is expected that they specify the same credentials.

The swift credentials may be set explicitly with the following configuration
values:

	Name

	fs.swift.service.sahara.username

	fs.swift.service.sahara.password

Setting the swift credentials explicitly is required when passing literal
swift paths as arguments instead of using data source references. When
possible, use data source references as described in
Using Data Source References as Arguments.

Additional Details for Hive jobs

Sahara will automatically generate values for the INPUT and OUTPUT
parameters required by Hive based on the specified data sources.

Additional Details for Pig jobs

Sahara will automatically generate values for the INPUT and OUTPUT
parameters required by Pig based on the specified data sources.

For Pig jobs, arguments should be thought of as command line arguments
separated by spaces and passed to the pig shell.

Parameters are a shorthand and are actually translated to the arguments
-param name=value

Additional Details for MapReduce jobs

Important!

If the job type is MapReduce, the mapper and reducer classes must be
specified as configuration values.

Note that the UI will not prompt the user for these required values; they must
be added manually with the Configure tab.

Make sure to add these values with the correct names:

	Name
	Example Value

	mapred.mapper.new-api
	true

	mapred.reducer.new-api
	true

	mapreduce.job.map.class
	org.apache.oozie.example.SampleMapper

	mapreduce.job.reduce.class
	org.apache.oozie.example.SampleReducer

Additional Details for MapReduce.Streaming jobs

Important!

If the job type is MapReduce.Streaming, the streaming mapper and reducer
classes must be specified.

In this case, the UI will prompt the user to enter mapper and reducer
values on the form and will take care of adding them to the job configuration
with the appropriate names. If using the python client, however, be certain to
add these values to the job configuration manually with the correct names:

	Name
	Example Value

	edp.streaming.mapper
	/bin/cat

	edp.streaming.reducer
	/usr/bin/wc

Additional Details for Java jobs

Data Source objects are not used directly with Java job types. Instead, any
input or output paths must be specified as arguments at job launch either
explicitly or by reference as described in
Using Data Source References as Arguments. Using data source references is
the recommended way to pass paths to Java jobs.

If configuration values are specified, they must be added to the job’s
Hadoop configuration at runtime. There are two methods of doing this. The
simplest way is to use the edp.java.adapt_for_oozie option described
below. The other method is to use the code from
this example [https://github.com/openstack/sahara/blob/master/etc/edp-examples/edp-java/README.rst]
to explicitly load the values.

The following special configuration values are read by sahara and affect how
Java jobs are run:

	edp.java.main_class (required) Specifies the full name of the class
containing main(String[] args)

A Java job will execute the main method of the specified main class. Any
arguments set during job launch will be passed to the program through the
args array.

	oozie.libpath (optional) Specifies configuration values for the Oozie
share libs, these libs can be shared by different workflows

	edp.java.java_opts (optional) Specifies configuration values for the JVM

	edp.java.adapt_for_oozie (optional) Specifies that sahara should perform
special handling of configuration values and exit conditions. The default is
False.

If this configuration value is set to True, sahara will modify
the job’s Hadoop configuration before invoking the specified main method.
Any configuration values specified during job launch (excluding those
beginning with edp.) will be automatically set in the job’s Hadoop
configuration and will be available through standard methods.

Secondly, setting this option to True ensures that Oozie will handle
program exit conditions correctly.

At this time, the following special configuration value only applies when
running jobs on a cluster generated by the Cloudera plugin with the
Enable Hbase Common Lib cluster config set to True (the default value):

	edp.hbase_common_lib (optional) Specifies that a common Hbase lib
generated by sahara in HDFS be added to the oozie.libpath. This for use
when an Hbase application is driven from a Java job. Default is False.

The edp-wordcount example bundled with sahara shows how to use
configuration values, arguments, and swift data paths in a Java job type. Note
that the example does not use the edp.java.adapt_for_oozie option but
includes the code to load the configuration values explicitly.

Additional Details for Shell jobs

A shell job will execute the script specified as main, and will place any
files specified as libs in the same working directory (on both the
filesystem and in HDFS). Command line arguments may be passed to the script
through the args array, and any params values will be passed as
environment variables.

Data Source objects are not used directly with Shell job types but data source
references may be used as described in
Using Data Source References as Arguments.

The edp-shell example bundled with sahara contains a script which will
output the executing user to a file specified by the first command line
argument.

Additional Details for Spark jobs

Data Source objects are not used directly with Spark job types. Instead, any
input or output paths must be specified as arguments at job launch either
explicitly or by reference as described in
Using Data Source References as Arguments. Using data source references
is the recommended way to pass paths to Spark jobs.

Spark jobs use some special configuration values:

	edp.java.main_class (required) Specifies the full name of the class
containing the Java or Scala main method:

	main(String[] args) for Java

	main(args: Array[String] for Scala

A Spark job will execute the main method of the specified main class.
Any arguments set during job launch will be passed to the program through the
args array.

	edp.spark.adapt_for_swift (optional) If set to True, instructs
sahara to modify the job’s Hadoop configuration so that swift paths may be
accessed. Without this configuration value, swift paths will not be
accessible to Spark jobs. The default is False.

	edp.spark.driver.classpath (optional) If set to empty string sahara
will use default classpath for the cluster during job execution.
Otherwise this will override default value for the cluster for particular
job execution.

The edp-spark example bundled with sahara contains a Spark program for
estimating Pi.

Special Sahara URLs

Sahara uses custom URLs to refer to objects stored in swift, in manila, or in
the sahara internal database. These URLs are not meant to be used outside of
sahara.

Sahara swift URLs passed to running jobs as input or output sources include a
”.sahara” suffix on the container, for example:

swift://container.sahara/object

You may notice these swift URLs in job logs, however, you do not need to add
the suffix to the containers yourself. sahara will add the suffix if
necessary, so when using the UI or the python client you may write the above
URL simply as:

swift://container/object

Sahara internal database URLs have the form:

internal-db://sahara-generated-uuid

This indicates a file object in the sahara database which has the given uuid
as a key.

Manila NFS filesystem reference URLS take the form:

manila://share-uuid/path

This format should be used when referring to a job binary or a data source
stored in a manila NFS share.

EDP Requirements

The OpenStack installation and the cluster launched from sahara must meet the
following minimum requirements in order for EDP to function:

OpenStack Services

When a Hadoop job is executed, binaries are first uploaded to a cluster node
and then moved from the node local filesystem to HDFS. Therefore, there must
be an instance of HDFS available to the nodes in the sahara cluster.

If the swift service is not running in the OpenStack installation:

	Job binaries may only be stored in the sahara internal database

	Data sources require a long-running HDFS

If the swift service is running in the OpenStack installation:

	Job binaries may be stored in swift or the sahara internal database

	Data sources may be in swift or a long-running HDFS

Cluster Processes

Requirements for EDP support depend on the EDP job type and plugin used for
the cluster. For example a Vanilla sahara cluster must run at least one
instance of these processes to support EDP:

	For Hadoop version 1:
	jobtracker

	namenode

	oozie

	tasktracker

	datanode

	For Hadoop version 2:
	namenode

	datanode

	resourcemanager

	nodemanager

	historyserver

	oozie

	spark history server

EDP Technical Considerations

There are several things in EDP which require attention in order
to work properly. They are listed on this page.

Transient Clusters

EDP allows running jobs on transient clusters. In this case the cluster is
created specifically for the job and is shut down automatically once the job
is finished.

Two config parameters control the behaviour of periodic clusters:

	periodic_enable - if set to ‘false’, sahara will do nothing to a transient
cluster once the job it was created for is completed. If it is set to
‘true’, then the behaviour depends on the value of the next parameter.

	use_identity_api_v3 - set it to ‘false’ if your OpenStack installation
does not provide keystone API v3. In that case sahara will not terminate
unneeded clusters. Instead it will set their state to ‘AwaitingTermination’
meaning that they could be manually deleted by a user. If the parameter is
set to ‘true’, sahara will itself terminate the cluster. The limitation is
caused by lack of ‘trusts’ feature in Keystone API older than v3.

If both parameters are set to ‘true’, sahara works with transient clusters in
the following manner:

	When a user requests for a job to be executed on a transient cluster,
sahara creates such a cluster.

	Sahara drops the user’s credentials once the cluster is created but
prior to that it creates a trust allowing it to operate with the
cluster instances in the future without user credentials.

	Once a cluster is not needed, sahara terminates its instances using the
stored trust. sahara drops the trust after that.

Sahara REST API v1.1

1 General API information

This section contains base info about the sahara REST API design.

1.1 Authentication and Authorization

The sahara API uses the OpenStack Identity service as the default
authentication service. When the Identity service is enabled, users who
submit requests to the sahara service must provide an authentication token in
the X-Auth-Token request header. A user can obtain the token by
authenticating to the Identity service endpoint. For more information about
the Identity service, please see the keystone project developer documentation [http://docs.openstack.org/developer/keystone/]

With each request, a user must specify the keystone project
in the url path, for example: ‘/v1.1/{project_id}/clusters’. Sahara
will perform the requested operation in the specified project using the
provided credentials. Therefore, clusters may be created and managed only
within projects to which the user has access.

1.2 Request / Response Types

The sahara API supports the JSON data serialization format. This means that
for requests that contain a body, the Content-Type header must be set to
the MIME type value application/json. Also, clients should accept JSON
serialized responses by specifying the Accept header with the MIME type
value application/json or adding the .json extension to the resource
name. The default response format is application/json if the client does
not specify an Accept header or append the .json extension in the URL
path.

Example:

GET /v1.1/{project_id}/clusters.json

or

GET /v1.1/{project_id}/clusters
Accept: application/json

1.3 Navigation by response

Sahara API supports delivering response data by pages. User can pass
two parameters in API GET requests which return an array of objects.
The parameters are:

limit - maximum number of objects in response data.
This parameter must be a positive integer number.

marker - ID of the last element on the list which won’t be in response.

Example:
Get 15 clusters after cluster with id=d62ad147-5c10-418c-a21a-3a6597044f29:

GET /v1.1/{project_id}/clusters?limit=15&marker=d62ad147-5c10-418c-a21a-3a6597044f29

For convenience, response contains markers of previous and following pages
which are named ‘prev’ and ‘next’ fields. Also there is sort_by parameter
for sorting objects. Sahara API supports ascending and descending sorting.

Examples:
Sort clusters by name:

GET /v1.1/{project_id}/clusters?sort_by=name

Sort clusters by date of creation in descending order:

GET /v1.1/{project_id}/clusters?sort_by=-created_at

1.4 Faults

The sahara API returns an error response if a failure occurs while
processing a request. Sahara uses only standard HTTP error codes. 4xx errors
indicate problems in the particular request being sent from the client and
5xx errors indicate server-side problems.

The response body will contain richer information about the cause of the
error. An error response follows the format illustrated by the following
example:

HTTP/1.1 400 BAD REQUEST
Content-type: application/json
Content-length: 126

{
 "error_name": "CLUSTER_NAME_ALREADY_EXISTS",
 "error_message": "Cluster with name 'test-cluster' already exists",
 "error_code": 400
}

The error_code attribute is an HTTP response code. The error_name
attribute indicates the generic error type without any concrete ids or
names, etc. The last attribute, error_message, contains a human readable
error description.

2 API

	Sahara REST API Reference (OpenStack API Complete Reference - DataProcessing) [http://developer.openstack.org/api-ref/data-processing/]

Requirements for Guests

Sahara manages guests of various platforms (for example Ubuntu, Fedora, RHEL,
and CentOS) with various versions of the Hadoop ecosystem projects installed.
There are common requirements for all guests, and additional requirements based
on the plugin that is used for cluster deployment.

Common Requirements

	The operating system must be Linux

	cloud-init must be installed

	ssh-server must be installed
	if a firewall is active it must allow connections on port 22 to enable ssh

Vanilla Plugin Requirements

If the Vanilla Plugin is used for cluster deployment the guest is required to
have

	ssh-client installed

	Java (version >= 6)

	Apache Hadoop installed

	‘hadoop’ user created

See Swift Integration for information on using Swift with your sahara cluster
(for EDP support Swift integration is currently required).

To support EDP, the following components must also be installed on the guest:

	Oozie version 4 or higher

	mysql

	hive

See Building Images for Vanilla Plugin for instructions on building images for this
plugin.

Hortonworks Plugin Requirements

This plugin does not have any additional requirements. Currently, only the
CentOS Linux and Ubuntu distributions are supported but other distributions
will be supported in the future.
To speed up provisioning, the HDP packages can be pre-installed on the image
used. The packages’ versions depend on the HDP version being used.

Cloudera Plugin Requirements

Cloudera Plugin does not have any additional requirements, just build a CDH
image to deploy the cluster.

See Building Images for Cloudera Plugin for instructions on building images for this
plugin.

Swift Integration

Hadoop and Swift integration are the essential continuation of the
Hadoop/OpenStack marriage. The key component to making this marriage work is
the Hadoop Swift filesystem implementation. Although this implementation has
been merged into the upstream Hadoop project, Sahara maintains a version with
the most current features enabled.

	The original Hadoop patch can be found at
https://issues.apache.org/jira/browse/HADOOP-8545

	The most current Sahara maintained version of this patch can be found in the
Sahara Extra repository https://github.com/openstack/sahara-extra

	The latest compiled version of the jar for this component can be downloaded
from http://tarballs.openstack.org/sahara/dist/hadoop-openstack/master/

Now the latest version of this jar (which uses Keystone API v3) is used in
the plugins’ images automatically during build of these images. But for
Ambari plugin we need to explicitly put this jar into /opt directory of the
base image before cluster launching.

Hadoop patching

You may build the jar file yourself by choosing the latest patch from the
Sahara Extra repository and using Maven to build with the pom.xml file
provided. Or you may get the latest jar pre-built at
http://tarballs.openstack.org/sahara/dist/hadoop-openstack/master/

You will need to put this file into the hadoop libraries
(e.g. /usr/lib/share/hadoop/lib, it depends on the plugin which you use) on
each ResourceManager and NodeManager node (for Hadoop 2.x) in the cluster.

Hadoop configurations

In general, when Sahara runs a job on a cluster it will handle configuring the
Hadoop installation. In cases where a user might require more in-depth
configuration all the data is set in the core-site.xml file on the cluster
instances using this template:

<property>
 <name>${name} + ${config}</name>
 <value>${value}</value>
 <description>${not mandatory description}</description>
</property>

There are two types of configs here:

	General. The ${name} in this case equals to fs.swift. Here is the
list of ${config}:

	.impl - Swift FileSystem implementation. The ${value} is
org.apache.hadoop.fs.swift.snative.SwiftNativeFileSystem

	.connect.timeout - timeout for all connections by default: 15000

	.socket.timeout - how long the connection waits for responses from
servers. by default: 60000

	.connect.retry.count - connection retry count for all connections. by
default: 3

	.connect.throttle.delay - delay in millis between bulk (delete,
rename, copy operations). by default: 0

	.blocksize - blocksize for filesystem. By default: 32Mb

	.partsize - the partition size for uploads. By default: 4608*1024Kb

	.requestsize - request size for reads in KB. By default: 64Kb

	Provider-specific. The patch for Hadoop supports different cloud providers.
The ${name} in this case equals to fs.swift.service.${provider}.

Here is the list of ${config}:

	.auth.url - authorization URL

	.auth.endpoint.prefix - prefix for the service url, e.g. /AUTH_

	.tenant - project name

	.username

	.password

	.domain.name - Domains can be used to specify users who are not in
the project specified.

	.domain.id - You can also specify domain using id.

	.trust.id - Trusts are optionally used to scope the authentication
tokens of the supplied user.

	.http.port

	.https.port

	.region - Swift region is used when cloud has more than one Swift
installation. If region param is not set first region from Keystone
endpoint list will be chosen. If region param not found exception will be
thrown.

	.location-aware - turn On location awareness. Is false by default

	.apikey

	.public

Example

For this example it is assumed that you have setup a Hadoop instance with
a valid configuration and the Swift filesystem component. Furthermore there is
assumed to be a Swift container named integration holding an object named
temp, as well as a Keystone user named admin with a password of
swordfish.

The following example illustrates how to copy an object to a new location in
the same container. We will use Hadoop’s distcp command
(http://hadoop.apache.org/docs/r0.19.0/distcp.html) to accomplish the copy.
Note that the service provider for our Swift access is sahara, and that
we will not need to specify the project of our Swift container as it will
be provided in the Hadoop configuration.

Swift paths are expressed in Hadoop according to the following template:
swift://${container}.${provider}/${object}. For our example source this
will appear as swift://integration.sahara/temp.

Let’s run the job:

$ hadoop distcp -D fs.swift.service.sahara.username=admin \
 -D fs.swift.service.sahara.password=swordfish \
 swift://integration.sahara/temp swift://integration.sahara/temp1

After that just confirm that temp1 has been created in our integration
container.

Limitations

Note: Please note that container names should be a valid URI.

Building Images for Vanilla Plugin

In this document you will find instruction on how to build Ubuntu, Fedora, and
CentOS images with Apache Hadoop version 2.x.x.

As of now the vanilla plugin works with images with pre-installed versions of
Apache Hadoop. To simplify the task of building such images we use
Disk Image Builder [https://github.com/openstack/diskimage-builder].

Disk Image Builder builds disk images using elements. An element is a
particular set of code that alters how the image is built, or runs within the
chroot to prepare the image.

Elements for building vanilla images are stored in the
Sahara image elements repository [https://github.com/openstack/sahara-image-elements]

Note

Sahara requires images with cloud-init package installed:

	For Fedora [http://pkgs.fedoraproject.org/cgit/cloud-init.git/]

	For Ubuntu 14 [http://packages.ubuntu.com/trusty/cloud-init]

	For CentOS 6 [http://mirror.centos.org/centos/6/extras/x86_64/Packages/cloud-init-0.7.5-10.el6.centos.2.x86_64.rpm]

	For CentOS 7 [http://mirror.centos.org/centos/7/extras/x86_64/Packages/cloud-init-0.7.5-10.el7.centos.1.x86_64.rpm]

To create vanilla images follow these steps:

	Clone repository “https://github.com/openstack/sahara-image-elements”
locally.

	Use tox to build images.

You can run the command below in sahara-image-elements
directory to build images. By default this script will attempt to create
cloud images for all versions of supported plugins and all operating systems
(subset of Ubuntu, Fedora, and CentOS depending on plugin).

tox -e venv -- sahara-image-create -u

If you want to build Vanilla 2.7.1 image with centos 7 just execute:

tox -e venv -- sahara-image-create -p vanilla -v 2.7.1 -i centos7

Tox will create a virtualenv and install required python packages in it,
clone the repositories “https://github.com/openstack/diskimage-builder” and
“https://github.com/openstack/sahara-image-elements” and export necessary
parameters.

	DIB_HADOOP_VERSION - version of Hadoop to install

	JAVA_DOWNLOAD_URL - download link for JDK (tarball or bin)

	OOZIE_DOWNLOAD_URL - download link for OOZIE (we have built
Oozie libs here: http://sahara-files.mirantis.com/oozie-4.2.0-hadoop-2.7.1.tar.gz)

	SPARK_DOWNLOAD_URL - download link for Spark

	HIVE_VERSION - version of Hive to install
(currently supports only 0.11.0)

	ubuntu_image_name

	fedora_image_name

	DIB_IMAGE_SIZE - parameter that specifies a volume of hard disk
of instance. You need to specify it only for Fedora because Fedora
doesn’t use all available volume

	DIB_COMMIT_ID - latest commit id of diskimage-builder project

	SAHARA_ELEMENTS_COMMIT_ID - latest commit id of
sahara-image-elements project

	NOTE: If you don’t want to use default values, you should set your values

	of parameters.

Then it will create required cloud images using image elements that install
all the necessary packages and configure them. You will find created images
in the parent directory.

Note

Disk Image Builder will generate QCOW2 images, used with the default
OpenStack Qemu/KVM hypervisors. If your OpenStack uses a different
hypervisor, the generated image should be converted to an appropriate
format.

VMware Nova backend requires VMDK image format. You may use qemu-img
utility to convert a QCOW2 image to VMDK.

qemu-img convert -O vmdk <original_image>.qcow2 <converted_image>.vmdk

For finer control of diskimage-create.sh see the official documentation [https://github.com/openstack/sahara-image-elements/blob/master/diskimage-create/README.rst]

Building Images for Cloudera Plugin

In this document you will find instructions on how to build Ubuntu and CentOS
images with Cloudera Express (now only versions {5.0.0, 5.3.0 5.4.0, 5.5.0,
5.7.x, 5.9.x} are supported).

To simplify the task of building such images we use
Disk Image Builder [https://github.com/openstack/diskimage-builder].

Disk Image Builder builds disk images using elements. An element is a
particular set of code that alters how the image is built, or runs within the
chroot to prepare the image.

Elements for building Cloudera images are stored in
Sahara extra repository [https://github.com/openstack/sahara-image-elements]

Note

Sahara requires images with cloud-init package installed:

	For CentOS 6 [http://mirror.centos.org/centos/6/extras/x86_64/Packages/cloud-init-0.7.5-10.el6.centos.2.x86_64.rpm]

	For CentOS 7 [http://mirror.centos.org/centos/7/extras/x86_64/Packages/cloud-init-0.7.5-10.el7.centos.1.x86_64.rpm]

	For Ubuntu 14 [http://packages.ubuntu.com/trusty/cloud-init]

To create cloudera images follow these steps:

	Clone repository “https://github.com/openstack/sahara-image-elements” locally.

	Use tox to build images.

You can run “tox -e venv – sahara-image-create” command in
sahara-image-elements directory to build images. By default this script will
attempt to create cloud images for all versions of supported plugins and all
operating systems (subset of Ubuntu, Fedora, and CentOS depending on
plugin). To only create Cloudera images, you should use the “-p cloudera”
parameter in the command line. If you want to create the image only for a
specific operating system, you should use the “-i ubuntu|centos|centos7”
parameter to assign the operating system (the cloudera plugin only supports
Ubuntu and Centos). If you want to create the image only for a specific
Cloudera version, you should use the “-v 5.0|5.3|5.4|5.5|5.7|5.9” parameter
to assign the version. Note that Centos 7 can only be used with CDH 5.5 and
higher. Below is an example to create Cloudera images for both Ubuntu and
CentOS with Cloudera Express 5.5.0 version.

tox -e venv -- sahara-image-create -p cloudera -v 5.5

If you want to create only an Ubuntu image, you may use following example
for that:

tox -e venv -- sahara-image-create -p cloudera -i ubuntu -v 5.5

For CDH 5.7 and higher we support minor versions. If you want to build a minor
version just export DIB_CDH_MINOR_VERSION before sahara-image-create launch, e.g.:

export DIB_CDH_MINOR_VERSION=5.7.1

NOTE: If you don’t want to use default values, you should explicitly set the
values of your required parameters.

The script will create required cloud images using image elements that
install all the necessary packages and configure them. You will find the
created images in the parent directory.

Note

Disk Image Builder will generate QCOW2 images, used with the default
OpenStack Qemu/KVM hypervisors. If your OpenStack uses a different
hypervisor, the generated image should be converted to an appropriate
format.

The VMware Nova backend requires the VMDK image format. You may use
qemu-img utility to convert a QCOW2 image to VMDK.

qemu-img convert -O vmdk <original_image>.qcow2 <converted_image>.vmdk

For finer control of diskimage-create.sh see the official documentation [https://github.com/openstack/sahara-image-elements/blob/master/diskimage-create/README.rst]

Development Guidelines

Coding Guidelines

For all the Python code in Sahara we have a rule - it should pass PEP 8 [http://www.python.org/dev/peps/pep-0008/].
All Bash code should pass bashate [https://github.com/openstack-dev/bashate].

To check your code against PEP 8 and bashate run:

$ tox -e pep8

Note

For more details on coding guidelines see file HACKING.rst in the root
of Sahara repo.

Static analysis

The static analysis checks are optional in Sahara. but they are still very
useful. The gate job will inform you if the number of static analysis warnings
has increased after your change. We recommend to always check the static
warnings.

To run the check commit yor change first and execute the following command:

$ tox -e pylint

Modification of Upstream Files

We never modify upstream files in Sahara. Any changes in upstream files should
be made in the upstream project and then merged back in to Sahara. This
includes whitespace changes, comments, and typos. Any change requests
containing upstream file modifications are almost certain to receive lots of
negative reviews. Be warned.

Examples of upstream files are default xml configuration files used to
configure Hadoop, or code imported from the OpenStack Oslo project. The xml
files will usually be found in resource directories with an accompanying
README file that identifies where the files came from. For example:

$ pwd
/home/me/sahara/sahara/plugins/vanilla/v2_7_1/resources

$ ls
core-default.xml hdfs-default.xml oozie-default.xml README.rst
create_oozie_db.sql mapred-default.xml post_conf.template yarn-default.xml

Testing Guidelines

Sahara has a suite of tests that are run on all submitted code,
and it is recommended that developers execute the tests themselves to
catch regressions early. Developers are also expected to keep the
test suite up-to-date with any submitted code changes.

Unit tests are located at sahara/tests/unit.

Sahara’s suite of unit tests can be executed in an isolated environment
with Tox [http://tox.testrun.org/]. To execute the unit tests run the following from the root of
Sahara repo:

$ tox -e py27

Documentation Guidelines

All Sahara docs are written using Sphinx / RST and located in the main repo
in the doc directory. You can add or edit pages here to update the
http://docs.openstack.org/developer/sahara site.

The documentation in docstrings should follow the PEP 257 [http://www.python.org/dev/peps/pep-0257/] conventions
(as mentioned in the PEP 8 [http://www.python.org/dev/peps/pep-0008/] guidelines).

More specifically:

	Triple quotes should be used for all docstrings.

	If the docstring is simple and fits on one line, then just use
one line.

	For docstrings that take multiple lines, there should be a newline
after the opening quotes, and before the closing quotes.

	Sphinx [http://sphinx.pocoo.org/markup/index.html] is used to build documentation, so use the restructured text
markup to designate parameters, return values, etc.

Run the following command to build docs locally.

$ tox -e docs

After it you can access generated docs in doc/build/ directory, for
example, main page - doc/build/html/index.html.

To make the doc generation process faster you can use:

$ SPHINX_DEBUG=1 tox -e docs

To avoid sahara reinstallation to virtual env each time you want to rebuild
docs you can use the following command (it can be executed only after
running tox -e docs first time):

$ SPHINX_DEBUG=1 .tox/docs/bin/python setup.py build_sphinx

Note

For more details on documentation guidelines see HACKING.rst in the root of
the Sahara repo.

Event log Guidelines

Currently Sahara keeps useful information about provisioning for each cluster.
Cluster provisioning can be represented as a linear series of provisioning
steps, which are executed one after another. Each step may consist of several
events. The number of events depends on the step and the number of instances
in the cluster. Also each event can contain information about its cluster,
instance, and node group. In case of errors, events contain useful information
for identifying the error. Additionally, each exception in sahara contains a
unique identifier that allows the user to find extra information about that
error in the sahara logs. You can see an example of provisioning progress
information here:
http://developer.openstack.org/api-ref/data-processing/#event-log

This means that if you add some important phase for cluster provisioning to
the sahara code, it’s recommended to add a new provisioning step for this
phase. This will allow users to use event log for handling errors during this
phase.

Sahara already has special utils for operating provisioning steps and events
in the module sahara/utils/cluster_progress_ops.py.

Note

It’s strictly recommended not to use conductor event log ops directly
to assign events and operate provisioning steps.

Note

You should not start a new provisioning step until the previous step has
successfully completed.

Note

It’s strictly recommended to use event_wrapper for event handling.

OpenStack client usage guidelines

The sahara project uses several OpenStack clients internally. These clients
are all wrapped by utility functions which make using them more convenient.
When developing sahara, if you need to use an OpenStack client you should
check the sahara.utils.openstack package for the appropriate one.

When developing new OpenStack client interactions in sahara, it is important
to understand the sahara.service.sessions package and the usage of the
keystone Session and auth plugin objects (for example, Token and
Password). Sahara is migrating all clients to use this authentication
methodology, where available. For more information on using sessions with
keystone, please see
http://docs.openstack.org/developer/keystoneauth/using-sessions.html

Storing sensitive information

During the course of development, there is often cause to store sensitive
information (for example, login credentials) in the records for a cluster,
job, or some other record. Storing secret information this way is not
safe. To mitigate the risk of storing this information, sahara provides
access to the OpenStack Key Manager service (implemented by the
barbican project [http://docs.openstack.org/developer/barbican/]) through
the castellan library [http://docs.openstack.org/developer/castellan/].

To utilize the external key manager, the functions in
sahara.service.castellan.utils are provided as wrappers around the
castellan library. These functions allow a developer to store, retrieve, and
delete secrets from the manager. Secrets that are managed through the key
manager have an identifier associated with them. These identifiers are
considered safe to store in the database.

The following are some examples of working with secrets in the sahara
codebase. These examples are considered basic, any developer wishing to
learn more about the advanced features of storing secrets should look to
the code and docstrings contained in the sahara.service.castellan module.

Storing a secret

from sahara.service.castellan import utils as key_manager

password = 'SooperSecretPassword'
identifier = key_manager.store_secret(password)

Retrieving a secret

from sahara.service.castellan import utils as key_manager

password = key_manager.get_secret(identifier)

Deleting a secret

from sahara.service.castellan import utils as key_manager

key_manager.delete_secret(identifier)

When storing secrets through this interface it is important to remember that
if an external key manager is being used, each stored secret creates an
entry in an external service. When you are finished using the secret it is
good practice to delete it, as not doing so may leave artifacts in those
external services.

For more information on configuring sahara to use the OpenStack Key
Manager service, see External key manager usage.

Setting Up a Development Environment

This page describes how to setup a Sahara development environment by either
installing it as a part of DevStack or pointing a local running instance at an
external OpenStack. You should be able to debug and test your changes without
having to deploy Sahara.

Setup a Local Environment with Sahara inside DevStack

See the main article.

Setup a Local Environment with an external OpenStack

	Install prerequisites

On OS X Systems:

we actually need pip, which is part of python package
$ brew install python mysql postgresql rabbitmq
$ pip install virtualenv tox

On Ubuntu:

$ sudo apt-get update
$ sudo apt-get install git-core python-dev python-virtualenv gcc libpq-dev libmysqlclient-dev python-pip rabbitmq-server
$ sudo pip install tox

On Red Hat and related distributions (CentOS/Fedora/RHEL/Scientific Linux):

$ sudo yum install git-core python-devel python-virtualenv gcc python-pip mariadb-devel postgresql-devel erlang
$ sudo pip install tox
$ sudo wget http://www.rabbitmq.com/releases/rabbitmq-server/v3.2.2/rabbitmq-server-3.2.2-1.noarch.rpm
$ sudo rpm --import http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
$ sudo yum install rabbitmq-server-3.2.2-1.noarch.rpm

On openSUSE-based distributions (SLES 12, openSUSE, Factory or Tumbleweed):

$ sudo zypper in gcc git libmysqlclient-devel postgresql-devel python-devel python-pip python-tox python-virtualenv

	Grab the code

$ git clone git://github.com/openstack/sahara.git
$ cd sahara

	Generate Sahara sample using tox

tox -e genconfig

	Create config file from the sample

$ cp ./etc/sahara/sahara.conf.sample ./etc/sahara/sahara.conf

	Look through the sahara.conf and modify parameter values as needed
For details see
Sahara Configuration Guide

	Create database schema

$ tox -e venv -- sahara-db-manage --config-file etc/sahara/sahara.conf upgrade head

	To start Sahara API and Engine processes call

$ tox -e venv -- sahara-api --config-file etc/sahara/sahara.conf --debug
$ tox -e venv -- sahara-engine --config-file etc/sahara/sahara.conf --debug

Setup local OpenStack dashboard with Sahara plugin

	Sahara UI Dev Environment Setup

Tips and tricks for dev environment

	Pip speedup

Add the following lines to ~/.pip/pip.conf

[global]
download-cache = /home/<username>/.pip/cache
index-url = <mirror url>

Note that the ~/.pip/cache folder should be created manually.

	Git hook for fast checks

Just add the following lines to .git/hooks/pre-commit and do chmod +x for it.

#!/bin/sh
Run fast checks (PEP8 style check and PyFlakes fast static analysis)
tox -epep8

You can add also other checks for pre-push, for example pylint (see below)
and tests (tox -epy27).

	Running static analysis (PyLint)

Just run the following command

tox -e pylint

Sahara UI Dev Environment Setup

This page describes how to setup Horizon for developing Sahara by either
installing it as part of DevStack with Sahara or installing it in an
isolated environment and running from the command line.

Install as a part of DevStack

See the DevStack guide for more information
on installing and configuring DevStack with Sahara.

Sahara UI can be installed as a DevStack plugin by adding the following line
to your local.conf file

Enable sahara-dashboard
enable_plugin sahara-dashboard git://git.openstack.org/openstack/sahara-dashboard

Isolated Dashboard for Sahara

	These installation steps serve two purposes:

	
	Setup a dev environment

	Setup an isolated Dashboard for Sahara

Note The host where you are going to perform installation has to be able
to connect to all OpenStack endpoints. You can list all available endpoints
using the following command:

$ openstack endpoint list

You can list the registered services with this command:

$ openstack service list

Sahara service should be present in keystone service list with service type
data-processing

	Install prerequisites

$ sudo apt-get update
$ sudo apt-get install git-core python-dev gcc python-setuptools \
 python-virtualenv node-less libssl-dev libffi-dev libxslt-dev

On Ubuntu 12.10 and higher you have to install the following lib as well:

$ sudo apt-get install nodejs-legacy

	Checkout Horizon from git and switch to your version of OpenStack

Here is an example:

$ git clone https://git.openstack.org/cgit/openstack/horizon/ {HORIZON_DIR}

Then install the virtual environment:

$ python {HORIZON_DIR}/tools/install_venv.py

	Create a local_settings.py file

$ cp {HORIZON_DIR}/openstack_dashboard/local/local_settings.py.example
 {HORIZON_DIR}/openstack_dashboard/local/local_settings.py

	Modify {HORIZON_DIR}/openstack_dashboard/local/local_settings.py

Set the proper values for host and url variables:

OPENSTACK_HOST = "ip of your controller"

If you are using Nova-Network with auto_assign_floating_ip=True add the
following parameter:

SAHARA_AUTO_IP_ALLOCATION_ENABLED = True

	Clone sahara-dashboard repository and checkout the desired branch

$ git clone https://git.openstack.org/cgit/openstack/sahara-dashboard/ \
 {SAHARA_DASHBOARD_DIR}

	Copy plugin-enabling files from sahara-dashboard repository to horizon

$ cp -a {SAHARA_DASHBOARD_DIR}/sahara_dashboard/enabled/* {HORIZON_DIR}/openstack_dashboard/local/enabled/

	Install sahara-dashboard project into your horizon virtualenv
in editable mode

$ source {HORIZON_DIR}/.venv/bin/activate
$ pip install -e {SAHARA_DASHBOARD_DIR}

	Start Horizon

$ source {HORIZON_DIR}/.venv/bin/activate
$ python {HORIZON_DIR}/manage.py runserver 0.0.0.0:8080

This will start Horizon in debug mode. That means the logs will be written to
console and if any exceptions happen, you will see the stack-trace rendered
as a web-page.

Debug mode can be disabled by changing DEBUG=True to False in
local_settings.py. In that case Horizon should be started slightly
differently, otherwise it will not serve static files:

$ source {HORIZON_DIR}/.venv/bin/activate
$ python {HORIZON_DIR}/manage.py runserver --insecure 0.0.0.0:8080

Note

It is not recommended to use Horizon in this mode for production.

Setup DevStack

DevStack can be installed on Fedora, Ubuntu, and CentOS. For supported
versions see DevStack documentation [http://devstack.org]

We recommend that you install DevStack in a VM, rather than on your main
system. That way you may avoid contamination of your system. You may find
hypervisor and VM requirements in the next section. If you still want to
install DevStack on your baremetal system, just skip the next section and read
further.

Start VM and set up OS

In order to run DevStack in a local VM, you need to start by installing
a guest with Ubuntu 14.04 server. Download an image file from
Ubuntu’s web site [http://www.ubuntu.com/download/server] and create
a new guest from it. Virtualization solution must support
nested virtualization. Without nested virtualization VMs running inside
the DevStack will be extremely slow lacking hardware acceleration, i.e.
you will run QEMU VMs without KVM.

On Linux QEMU/KVM supports nested virtualization, on Mac OS - VMware Fusion.
VMware Fusion requires adjustments to run VM with fixed IP. You may find
instructions which can help below.

Start a new VM with Ubuntu Server 14.04. Recommended settings:

	Processor - at least 2 cores

	Memory - at least 8GB

	Hard Drive - at least 60GB

When allocating CPUs and RAM to the DevStack, assess how big clusters you
want to run. A single Hadoop VM needs at least 1 cpu and 1G of RAM to run.
While it is possible for several VMs to share a single cpu core, remember
that they can’t share the RAM.

After you installed the VM, connect to it via SSH and proceed with the
instructions below.

Install DevStack

The instructions assume that you’ve decided to install DevStack into
Ubuntu 14.04 system.

	Clone DevStack:

$ sudo apt-get install git-core
$ git clone https://git.openstack.org/openstack-dev/devstack.git

	Create the file local.conf in devstack directory with the following
content:

[[local|localrc]]
ADMIN_PASSWORD=nova
MYSQL_PASSWORD=nova
RABBIT_PASSWORD=nova
SERVICE_PASSWORD=$ADMIN_PASSWORD
SERVICE_TOKEN=nova

Enable Swift
enable_service s-proxy s-object s-container s-account

SWIFT_HASH=66a3d6b56c1f479c8b4e70ab5c2000f5
SWIFT_REPLICAS=1
SWIFT_DATA_DIR=$DEST/data

Force checkout prerequisites
FORCE_PREREQ=1

keystone is now configured by default to use PKI as the token format
which produces huge tokens.
set UUID as keystone token format which is much shorter and easier to
work with.
KEYSTONE_TOKEN_FORMAT=UUID

Change the FLOATING_RANGE to whatever IPs VM is working in.
In NAT mode it is the subnet VMware Fusion provides, in bridged mode
it is your local network. But only use the top end of the network by
using a /27 and starting at the 224 octet.
FLOATING_RANGE=192.168.55.224/27

Enable logging
SCREEN_LOGDIR=$DEST/logs/screen

Set ``OFFLINE`` to ``True`` to configure ``stack.sh`` to run cleanly
without Internet access. ``stack.sh`` must have been previously run
with Internet access to install prerequisites and fetch repositories.
OFFLINE=True

Enable sahara
enable_plugin sahara git://git.openstack.org/openstack/sahara

In cases where you need to specify a git refspec (branch, tag, or commit hash)
for the sahara in-tree devstack plugin (or sahara repo), it should be
appended to the git repo URL as follows:

enable_plugin sahara git://git.openstack.org/openstack/sahara <some_git_refspec>

	Sahara can send notifications to Ceilometer, if Ceilometer is enabled.
If you want to enable Ceilometer add the following lines to the
local.conf file:

enable_plugin ceilometer git://git.openstack.org/openstack/ceilometer

	Start DevStack:

$./stack.sh

	Once the previous step is finished Devstack will print a Horizon URL.
Navigate to this URL and login with login “admin” and password from
local.conf.

	Congratulations! You have OpenStack running in your VM and you’re ready to
launch VMs inside that VM. :)

Managing sahara in DevStack

If you install DevStack with sahara included you can rejoin screen with the
screen -c stack-screenrc command and switch to the sahara tab.
Here you can manage the sahara service as other OpenStack services.
Sahara source code is located at $DEST/sahara which is usually
/opt/stack/sahara.

Setting fixed IP address for VMware Fusion VM

	Open file /Library/Preferences/VMware Fusion/vmnet8/dhcpd.conf

	There is a block named “subnet”. It might look like this:

subnet 192.168.55.0 netmask 255.255.255.0 {
 range 192.168.55.128 192.168.55.254;

	You need to pick an IP address outside of that range. For example -
192.168.55.20

	Copy VM MAC address from VM settings->Network->Advanced

	Append the following block to file dhcpd.conf (don’t forget to replace
VM_HOSTNAME and VM_MAC_ADDRESS with actual values):

host VM_HOSTNAME {
 hardware ethernet VM_MAC_ADDRESS;
 fixed-address 192.168.55.20;
}

	Now quit all the VMware Fusion applications and restart vmnet:

$ sudo /Applications/VMware\ Fusion.app/Contents/Library/vmnet-cli --stop
$ sudo /Applications/VMware\ Fusion.app/Contents/Library/vmnet-cli --start

	Now start your VM; it should have new fixed IP address.

Sahara UI Dev Environment Setup

This page describes how to setup Horizon for developing Sahara by either
installing it as part of DevStack with Sahara or installing it in an
isolated environment and running from the command line.

Install as a part of DevStack

See the DevStack guide for more information
on installing and configuring DevStack with Sahara.

Sahara UI can be installed as a DevStack plugin by adding the following line
to your local.conf file

Enable sahara-dashboard
enable_plugin sahara-dashboard git://git.openstack.org/openstack/sahara-dashboard

Isolated Dashboard for Sahara

	These installation steps serve two purposes:

	
	Setup a dev environment

	Setup an isolated Dashboard for Sahara

Note The host where you are going to perform installation has to be able
to connect to all OpenStack endpoints. You can list all available endpoints
using the following command:

$ openstack endpoint list

You can list the registered services with this command:

$ openstack service list

Sahara service should be present in keystone service list with service type
data-processing

	Install prerequisites

$ sudo apt-get update
$ sudo apt-get install git-core python-dev gcc python-setuptools \
 python-virtualenv node-less libssl-dev libffi-dev libxslt-dev

On Ubuntu 12.10 and higher you have to install the following lib as well:

$ sudo apt-get install nodejs-legacy

	Checkout Horizon from git and switch to your version of OpenStack

Here is an example:

$ git clone https://git.openstack.org/cgit/openstack/horizon/ {HORIZON_DIR}

Then install the virtual environment:

$ python {HORIZON_DIR}/tools/install_venv.py

	Create a local_settings.py file

$ cp {HORIZON_DIR}/openstack_dashboard/local/local_settings.py.example
 {HORIZON_DIR}/openstack_dashboard/local/local_settings.py

	Modify {HORIZON_DIR}/openstack_dashboard/local/local_settings.py

Set the proper values for host and url variables:

OPENSTACK_HOST = "ip of your controller"

If you are using Nova-Network with auto_assign_floating_ip=True add the
following parameter:

SAHARA_AUTO_IP_ALLOCATION_ENABLED = True

	Clone sahara-dashboard repository and checkout the desired branch

$ git clone https://git.openstack.org/cgit/openstack/sahara-dashboard/ \
 {SAHARA_DASHBOARD_DIR}

	Copy plugin-enabling files from sahara-dashboard repository to horizon

$ cp -a {SAHARA_DASHBOARD_DIR}/sahara_dashboard/enabled/* {HORIZON_DIR}/openstack_dashboard/local/enabled/

	Install sahara-dashboard project into your horizon virtualenv
in editable mode

$ source {HORIZON_DIR}/.venv/bin/activate
$ pip install -e {SAHARA_DASHBOARD_DIR}

	Start Horizon

$ source {HORIZON_DIR}/.venv/bin/activate
$ python {HORIZON_DIR}/manage.py runserver 0.0.0.0:8080

This will start Horizon in debug mode. That means the logs will be written to
console and if any exceptions happen, you will see the stack-trace rendered
as a web-page.

Debug mode can be disabled by changing DEBUG=True to False in
local_settings.py. In that case Horizon should be started slightly
differently, otherwise it will not serve static files:

$ source {HORIZON_DIR}/.venv/bin/activate
$ python {HORIZON_DIR}/manage.py runserver --insecure 0.0.0.0:8080

Note

It is not recommended to use Horizon in this mode for production.

Quickstart guide

Launching a cluster via Sahara CLI commands

This guide will help you setup a vanilla Hadoop cluster using a combination
of OpenStack command line tools and the sahara REST API.

1. Install sahara

	If you want to hack the code follow
Setting Up a Development Environment.

OR

	If you just want to install and use sahara follow
Sahara Installation Guide.

2. Identity service configuration

To use the OpenStack command line tools you should specify
environment variables with the configuration details for your OpenStack
installation. The following example assumes that the Identity service is
at 127.0.0.1:5000, with a user admin in the admin project
whose password is nova:

$ export OS_AUTH_URL=http://127.0.0.1:5000/v2.0/
$ export OS_PROJECT_NAME=admin
$ export OS_USERNAME=admin
$ export OS_PASSWORD=nova

3. Upload an image to the Image service

You will need to upload a virtual machine image to the OpenStack Image
service. You can download pre-built images with vanilla Apache Hadoop
installed, or build the images yourself. This guide uses the latest available
Ubuntu upstream image, referred to as sahara-vanilla-latest-ubuntu.qcow2
and the latest version of vanilla plugin as an example.
Sample images are available here:

Sample Images [http://sahara-files.mirantis.com/images/upstream/]

	Download a pre-built image

Note: For the steps below, substitute <openstack_release> with the
appropriate OpenStack release and <sahara_image> with the image of your
choice.

$ ssh user@hostname
$ wget http://sahara-files.mirantis.com/images/upstream/<openstack_release>/<sahara_image>.qcow2

Upload the image downloaded above into the OpenStack Image service:

$ openstack image create sahara-vanilla-latest-ubuntu --disk-format qcow2 \
 --container-format bare --file sahara-vanilla-latest-ubuntu.qcow2
+------------------+--------------------------------------+
| Field | Value |
+------------------+--------------------------------------+
checksum	3da49911332fc46db0c5fb7c197e3a77
container_format	bare
created_at	2016-02-29T10:15:04.000000
deleted	False
deleted_at	None
disk_format	qcow2
id	71b9eeac-c904-4170-866a-1f833ea614f3
is_public	False
min_disk	0
min_ram	0
name	sahara-vanilla-latest-ubuntu
owner	057d23cddb864759bfa61d730d444b1f
properties	
protected	False
size	1181876224
status	active
updated_at	2016-02-29T10:15:41.000000
virtual_size	None
+------------------+--------------------------------------+

OR

	Build the image using: diskimage-builder script [https://github.com/openstack/sahara-image-elements/blob/master/diskimage-create/README.rst]

Remember the image name or save the image ID. This will be used during the
image registration with sahara. You can get the image ID using the
openstack command line tool as follows:

$ openstack image list --property name=sahara-vanilla-latest-ubuntu
+--------------------------------------+------------------------------+
| ID | Name |
+--------------------------------------+------------------------------+
| 71b9eeac-c904-4170-866a-1f833ea614f3 | sahara-vanilla-latest-ubuntu |
+--------------------------------------+------------------------------+

4. Register the image with the sahara image registry

Now you will begin to interact with sahara by registering the virtual
machine image in the sahara image registry.

Register the image with the username ubuntu.

Note

The username will vary depending on the source image used, as follows:
Ubuntu: ubuntu
CentOS 7: centos
CentOS 6: cloud-user
Fedora: fedora
Note that the Sahara team recommends using CentOS 7 instead of CentOS 6 as
a base OS wherever possible; it is better supported throughout OpenStack
image maintenance infrastructure and its more modern filesystem is much
more appropriate for large-scale data processing. For more please see
Vanilla Plugin

$ openstack dataprocessing image register sahara-vanilla-latest-ubuntu \
 --username ubuntu

Tag the image to inform sahara about the plugin and the version with which
it shall be used.

Note

For the steps below and the rest of this guide, substitute
<plugin_version> with the appropriate version of your plugin.

$ openstack dataprocessing image tags add sahara-vanilla-latest-ubuntu \
 --tags vanilla <plugin_version>
+-------------+--------------------------------------+
| Field | Value |
+-------------+--------------------------------------+
Description	None
Id	71b9eeac-c904-4170-866a-1f833ea614f3
Name	sahara-vanilla-latest-ubuntu
Status	ACTIVE
Tags	<plugin_version>, vanilla
Username	ubuntu
+-------------+--------------------------------------+

5. Create node group templates

Node groups are the building blocks of clusters in sahara. Before you can
begin provisioning clusters you must define a few node group templates to
describe node group configurations.

You can get information about available plugins with the following command:

$ openstack dataprocessing plugin list

Also you can get information about available services for a particular plugin
with the plugin show command. For example:

$ openstack dataprocessing plugin show vanilla --plugin-version <plugin_version>
+---------------------+---+
| Field | Value |
+---------------------+---+
Description	The Apache Vanilla plugin provides the ability to launch upstream Vanilla Apache Hadoop cluster without any
	management consoles. It can also deploy the Oozie component.
Name	vanilla
Required image tags	<plugin_version>, vanilla
Title	Vanilla Apache Hadoop
Service:	Available processes:
HDFS	datanode, namenode, secondarynamenode
Hadoop	
Hive	hiveserver
JobFlow	oozie
Spark	spark history server
MapReduce	historyserver
YARN	nodemanager, resourcemanager
+---------------------+---+

Note

These commands assume that floating IP addresses are being used. For more
details on floating IP please see Floating IP management.

Create a master node group template with the command:

$ openstack dataprocessing node group template create \
 --name vanilla-default-master --plugin vanilla \
 --plugin-version <plugin_version> --processes namenode resourcemanager \
 --flavor 2 --auto-security-group --floating-ip-pool <pool-id>
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
Auto security group	True
Availability zone	None
Flavor id	2
Floating ip pool	dbd8d1aa-6e8e-4a35-a77b-966c901464d5
Id	0f066e14-9a73-4379-bbb4-9d9347633e31
Is default	False
Is protected	False
Is proxy gateway	False
Is public	False
Name	vanilla-default-master
Node processes	namenode, resourcemanager
Plugin name	vanilla
Security groups	None
Use autoconfig	False
Version	<plugin_version>
Volumes per node	0
+---------------------+--------------------------------------+

Create a worker node group template with the command:

$ openstack dataprocessing node group template create \
 --name vanilla-default-worker --plugin vanilla \
 --plugin-version <plugin_version> --processes datanode nodemanager \
 --flavor 2 --auto-security-group --floating-ip-pool <pool-id>
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
Auto security group	True
Availability zone	None
Flavor id	2
Floating ip pool	dbd8d1aa-6e8e-4a35-a77b-966c901464d5
Id	6546bf44-0590-4539-bfcb-99f8e2c11efc
Is default	False
Is protected	False
Is proxy gateway	False
Is public	False
Name	vanilla-default-worker
Node processes	datanode, nodemanager
Plugin name	vanilla
Security groups	None
Use autoconfig	False
Version	<plugin_version>
Volumes per node	0
+---------------------+--------------------------------------+

Alternatively you can create node group templates from JSON files:

If your environment does not use floating IPs, omit defining floating IP in
the template below.

Sample templates can be found here:

Sample Templates [https://github.com/openstack/sahara/tree/master/sahara/plugins/default_templates/]

Create a file named my_master_template_create.json with the following
content:

{
 "plugin_name": "vanilla",
 "hadoop_version": "<plugin_version>",
 "node_processes": [
 "namenode",
 "resourcemanager"
],
 "name": "vanilla-default-master",
 "floating_ip_pool": "<floating_ip_pool_id>",
 "flavor_id": "2",
 "auto_security_group": true
}

Create a file named my_worker_template_create.json with the following
content:

{
 "plugin_name": "vanilla",
 "hadoop_version": "<plugin_version>",
 "node_processes": [
 "nodemanager",
 "datanode"
],
 "name": "vanilla-default-worker",
 "floating_ip_pool": "<floating_ip_pool_id>",
 "flavor_id": "2",
 "auto_security_group": true
}

Use the openstack client to upload the node group templates:

$ openstack dataprocessing node group template create \
 --json my_master_template_create.json
$ openstack dataprocessing node group template create \
 --json my_worker_template_create.json

List the available node group templates to ensure that they have been
added properly:

$ openstack dataprocessing node group template list --name vanilla-default
+------------------------+--------------------------------------+-------------+--------------------+
| Name | Id | Plugin name | Version |
+------------------------+--------------------------------------+-------------+--------------------+
| vanilla-default-master | 0f066e14-9a73-4379-bbb4-9d9347633e31 | vanilla | <plugin_version> |
| vanilla-default-worker | 6546bf44-0590-4539-bfcb-99f8e2c11efc | vanilla | <plugin_version> |
+------------------------+--------------------------------------+-------------+--------------------+

Remember the name or save the ID for the master and worker node group
templates, as they will be used during cluster template creation.

For example:

	vanilla-default-master: 0f066e14-9a73-4379-bbb4-9d9347633e31

	vanilla-default-worker: 6546bf44-0590-4539-bfcb-99f8e2c11efc

6. Create a cluster template

The last step before provisioning the cluster is to create a template
that describes the node groups of the cluster.

Create a cluster template with the command:

$ openstack dataprocessing cluster template create \
 --name vanilla-default-cluster \
 --node-groups vanilla-default-master:1 vanilla-default-worker:3

+----------------+--+
| Field | Value |
+----------------+--+
Anti affinity	
Description	None
Id	9d871ebd-88a9-40af-ae3e-d8c8f292401c
Is default	False
Is protected	False
Is public	False
Name	vanilla-default-cluster
Node groups	vanilla-default-master:1, vanilla-default-worker:3
Plugin name	vanilla
Use autoconfig	False
Version	<plugin_version>
+----------------+--+

Alternatively you can create cluster template from JSON file:

Create a file named my_cluster_template_create.json with the following
content:

{
 "plugin_name": "vanilla",
 "hadoop_version": "<plugin_version>",
 "node_groups": [
 {
 "name": "worker",
 "count": 3,
 "node_group_template_id": "6546bf44-0590-4539-bfcb-99f8e2c11efc"
 },
 {
 "name": "master",
 "count": 1,
 "node_group_template_id": "0f066e14-9a73-4379-bbb4-9d9347633e31"
 }
],
 "name": "vanilla-default-cluster",
 "cluster_configs": {}
}

Upload the cluster template using the openstack command line tool:

$ openstack dataprocessing cluster template create --json my_cluster_template_create.json

Remember the cluster template name or save the cluster template ID for use in
the cluster provisioning command. The cluster ID can be found in the output of
the creation command or by listing the cluster templates as follows:

$ openstack dataprocessing cluster template list --name vanilla-default
+-------------------------+--------------------------------------+-------------+--------------------+
| Name | Id | Plugin name | Version |
+-------------------------+--------------------------------------+-------------+--------------------+
| vanilla-default-cluster | 9d871ebd-88a9-40af-ae3e-d8c8f292401c | vanilla | <plugin_version> |
+-------------------------+--------------------------------------+-------------+--------------------+

7. Create cluster

Now you are ready to provision the cluster. This step requires a few pieces of
information that can be found by querying various OpenStack services.

Create a cluster with the command:

$ openstack dataprocessing cluster create --name my-cluster-1 \
 --cluster-template vanilla-default-cluster --user-keypair my_stack \
 --neutron-network private --image sahara-vanilla-latest-ubuntu

+----------------------------+--+
| Field | Value |
+----------------------------+--+
Anti affinity	
Cluster template id	9d871ebd-88a9-40af-ae3e-d8c8f292401c
Description	
Id	1f0dc6f7-6600-495f-8f3a-8ac08cdb3afc
Image	71b9eeac-c904-4170-866a-1f833ea614f3
Is protected	False
Is public	False
Is transient	False
Name	my-cluster-1
Neutron management network	fabe9dae-6fbd-47ca-9eb1-1543de325efc
Node groups	vanilla-default-master:1, vanilla-default-worker:3
Plugin name	vanilla
Status	Validating
Use autoconfig	False
User keypair id	my_stack
Version	<plugin_version>
+----------------------------+--+

Alternatively you can create a cluster template from a JSON file:

Create a file named my_cluster_create.json with the following content:

{
 "name": "my-cluster-1",
 "plugin_name": "vanilla",
 "hadoop_version": "<plugin_version>",
 "cluster_template_id" : "9d871ebd-88a9-40af-ae3e-d8c8f292401c",
 "user_keypair_id": "my_stack",
 "default_image_id": "71b9eeac-c904-4170-866a-1f833ea614f3",
 "neutron_management_network": "fabe9dae-6fbd-47ca-9eb1-1543de325efc"
}

The parameter user_keypair_id with the value my_stack is generated by
creating a keypair. You can create your own keypair in the OpenStack
Dashboard, or through the openstack command line client as follows:

$ openstack keypair create my_stack --public-key $PATH_TO_PUBLIC_KEY

If sahara is configured to use neutron for networking, you will also need to
include the --neutron-network argument in the cluster create command
or the neutron_management_network parameter in my_cluster_create.json.
If your environment does not use neutron, you should omit these arguments. You
can determine the neutron network id with the following command:

$ openstack network list

Create and start the cluster:

$ openstack dataprocessing cluster create --json my_cluster_create.json

Verify the cluster status by using the openstack command
line tool as follows:

$ openstack dataprocessing cluster show my-cluster-1 -c Status
+--------+--------+
| Field | Value |
+--------+--------+
| Status | Active |
+--------+--------+

The cluster creation operation may take several minutes to complete. During
this time the “status” returned from the previous command may show states
other than Active. A cluster also can be created with the wait flag.
In that case the cluster creation command will not be finished until the
cluster is moved to the Active state.

8. Run a MapReduce job to check Hadoop installation

Check that your Hadoop installation is working properly by running an
example job on the cluster manually.

	Login to the NameNode (usually the master node) via ssh with the ssh-key
used above:

$ ssh -i my_stack.pem ubuntu@<namenode_ip>

	Switch to the hadoop user:

$ sudo su hadoop

	Go to the shared hadoop directory and run the simplest MapReduce example:

$ cd /opt/hadoop-<plugin_version>/share/hadoop/mapreduce
$ /opt/hadoop-<plugin_version>/bin/hadoop jar hadoop-mapreduce-examples-<plugin_version>.jar pi 10 100

Congratulations! Your Hadoop cluster is ready to use, running on your
OpenStack cloud.

Elastic Data Processing (EDP)

Job Binaries are the entities you define/upload the source code
(mains and libraries) for your job.
First you need to download your binary file or script to swift container
and register your file in Sahara with the command:

(openstack) dataprocessing job binary create --url "swift://integration.sahara/hive.sql" \
 --username username --password password --description "My first job binary" hive-binary

Data Sources

Data Sources are entities where the input and output from your jobs are housed.
You can create data sources which are related to Swift, Manila or HDFS.
You need to set the type of data source (swift, hdfs, manila, maprfs),
name and url.
The next two commands will create input and output data sources in swift.

$ openstack dataprocessing data source create --type swift --username admin --password admin \
 --url "swift://integration.sahara/input.txt" input

$ openstack dataprocessing data source create --type swift --username admin --password admin \
 --url "swift://integration.sahara/output.txt" input

If you want to create data sources in hdfs, use valid hdfs urls:

$ openstack dataprocessing data source create --type hdfs --url "hdfs://tmp/input.txt" input

$ openstack dataprocessing data source create --type hdfs --url "hdfs://tmp/output.txt" output

Job Templates (Jobs in API)

In this step you need to create a job template. You have to set
the type of the job template using the type parameter. Choose
the main library using the job binary which was created
in the previous step and set a name for the job template.

Example of the command:

$ openstack dataprocessing job template create --type Hive \
 --name hive-job-template --main hive-binary

Jobs (Job Executions in API)

This is the last step in our guide. In this step you need to launch your job.
You need to pass the following arguments:

	The name or ID of input/output data sources for the job

	The name or ID of the job template

	The name or ID of the cluster on which to run the job

For instance:

$ openstack dataprocessing job execute --input input --output output \
 --job-template hive-job-template --cluster my-first-cluster

You can check status of your job with the command:

$ openstack dataprocessing job show <id_of_your_job>

Once the job is marked as successful you can check the output data source.
It will contain the output data of this job. Congratulations!

How to Participate

Getting started

	Create an account on Github [https://github.com/openstack/sahara]
(if you don’t have one)
	Make sure that your local git is properly configured by executing
git config --list. If not, configure user.name, user.email

	Create account on Launchpad [https://launchpad.net/sahara]
(if you don’t have one)

	Subscribe to OpenStack general mail-list [http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack]

	Subscribe to OpenStack development mail-list [http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev]

	Create OpenStack profile [https://www.openstack.org/profile/]

	Login to OpenStack Gerrit [https://review.openstack.org/] with your
Launchpad id
	Sign OpenStack Individual Contributor License Agreement [https://review.openstack.org/#/settings/agreements]

	Make sure that your email is listed in identities [https://review.openstack.org/#/settings/web-identities]

	Subscribe to code-reviews. Go to your settings on http://review.openstack.org
	Go to watched projects

	Add openstack/sahara, openstack/sahara-extra,
openstack/python-saharaclient, and openstack/sahara-image-elements

How to stay in touch with the community

	If you have something to discuss use
OpenStack development mail-list [http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev].
Prefix the mail subject with [Sahara]

	Join #openstack-sahara IRC channel on freenode [http://freenode.net/]

	Attend Sahara team meetings
	Weekly on Thursdays at 1400 UTC and 1800 UTC (on alternate weeks)

	IRC channel: #openstack-meeting-alt (1800UTC) or
#openstack-meeting-3 (1400UTC)

	See agenda at https://wiki.openstack.org/wiki/Meetings/SaharaAgenda

How to post your first patch for review

	Checkout Sahara code from Github [https://github.com/openstack/sahara]

	Carefully read http://docs.openstack.org/infra/manual/developers.html#development-workflow
	Pay special attention to http://docs.openstack.org/infra/manual/developers.html#committing-a-change

	Apply and commit your changes

	Make sure that your code passes PEP8 checks and unit-tests.
See Development Guidelines

	Post your patch for review

	Monitor the status of your patch review on https://review.openstack.org/#/

How to build Oozie

Note

Apache does not make Oozie builds, so it has to be built manually.

Download

	Download tarball from Apache mirror [http://apache-mirror.rbc.ru/pub/apache/oozie/4.0.1]

	Unpack it with

$ tar -xzvf oozie-4.0.1.tar.gz

Hadoop Versions

To build Oozie the following command can be used:

$ {oozie_dir}/bin/mkdistro.sh -DskipTests

By default it builds against Hadoop 1.1.1. To built it with Hadoop version
2.x:

	The hadoop-2 version should be changed in pom.xml.
This can be done manually or with the following command (you should
replace 2.x.x with your hadoop version):

$ find . -name pom.xml | xargs sed -ri 's/2.3.0/2.x.x/'

	The build command should be launched with the -P hadoop-2 flag

JDK Versions

By default, the build configuration enforces that JDK 1.6.* is being used.

There are 2 build properties that can be used to change the JDK version
requirements:

	javaVersion specifies the version of the JDK used to compile (default
1.6).

	targetJavaVersion specifies the version of the generated bytecode
(default 1.6).

For example, to specify JDK version 1.7, the build command should contain the
-D javaVersion=1.7 -D tagetJavaVersion=1.7 flags.

Build

To build Oozie with Hadoop 2.6.0 and JDK version 1.7, the following command
can be used:

$ {oozie_dir}/bin/mkdistro.sh assembly:single -P hadoop-2 -D javaVersion=1.7 -D targetJavaVersion=1.7 -D skipTests

Also, the pig version can be passed as a maven property with the flag
-D pig.version=x.x.x.

You can find similar instructions to build oozie.tar.gz here:
http://oozie.apache.org/docs/4.0.0/DG_QuickStart.html#Building_Oozie

Adding Database Migrations

The migrations in sahara/db/migration/alembic_migrations/versions contain
the changes needed to migrate between Sahara database revisions. A migration
occurs by executing a script that details the changes needed to upgrade or
downgrade the database. The migration scripts are ordered so that multiple
scripts can run sequentially. The scripts are executed by Sahara’s migration
wrapper which uses the Alembic library to manage the migration. Sahara supports
migration from Icehouse or later.

Any code modifications that change the structure of the database require a
migration script so that previously existing databases will continue to
function when the new code is released. This page gives a brief overview of how
to add the migration.

Generate a New Migration Script

New migration scripts can be generated using the sahara-db-manage command.

To generate a migration stub to be filled in by the developer:

$ sahara-db-manage --config-file /path/to/sahara.conf revision -m "description of revision"

To autogenerate a migration script that reflects the current structure of the
database:

$ sahara-db-manage --config-file /path/to/sahara.conf revision -m "description of revision" --autogenerate

Each of these commands will create a file of the form revision_description
where revision is a string generated by Alembic and description is
based on the text passed with the -m option.

Follow the Sahara Naming Convention

By convention Sahara uses 3-digit revision numbers, and this scheme differs
from the strings generated by Alembic. Consequently, it’s necessary to rename
the generated script and modify the revision identifiers in the script.

Open the new script and look for the variable down_revision. The value
should be a 3-digit numeric string, and it identifies the current revision
number of the database. Set the revision value to the down_revision
value + 1. For example, the lines:

revision identifiers, used by Alembic.
revision = '507eb70202af'
down_revision = '006'

will become:

revision identifiers, used by Alembic.
revision = '007'
down_revision = '006'

Modify any comments in the file to match the changes and rename the file to
match the new revision number:

$ mv 507eb70202af_my_new_revision.py 007_my_new_revision.py

Add Alembic Operations to the Script

The migration script contains method upgrade(). Sahara has not supported
downgrades since the Kilo release. Fill in this method with the appropriate
Alembic operations to perform upgrades. In the above example, an upgrade will
move from revision ‘006’ to revision ‘007’.

Command Summary for sahara-db-manage

You can upgrade to the latest database version via:

$ sahara-db-manage --config-file /path/to/sahara.conf upgrade head

To check the current database version:

$ sahara-db-manage --config-file /path/to/sahara.conf current

To create a script to run the migration offline:

$ sahara-db-manage --config-file /path/to/sahara.conf upgrade head --sql

To run the offline migration between specific migration versions:

$ sahara-db-manage --config-file /path/to/sahara.conf upgrade <start version>:<end version> --sql

To upgrade the database incrementally:

$ sahara-db-manage --config-file /path/to/sahara.conf upgrade --delta <# of revs>

To create a new revision:

$ sahara-db-manage --config-file /path/to/sahara.conf revision -m "description of revision" --autogenerate

To create a blank file:

$ sahara-db-manage --config-file /path/to/sahara.conf revision -m "description of revision"

This command does not perform any migrations, it only sets the revision.
Revision may be any existing revision. Use this command carefully:

$ sahara-db-manage --config-file /path/to/sahara.conf stamp <revision>

To verify that the timeline does branch, you can run this command:

$ sahara-db-manage --config-file /path/to/sahara.conf check_migration

If the migration path does branch, you can find the branch point via:

$ sahara-db-manage --config-file /path/to/sahara.conf history

Sahara Testing

We have a bunch of different tests for Sahara.

Unit Tests

In most Sahara sub-repositories we have a directory that contains Python unit
tests, located at _package_/tests/unit or _package_/tests.

Scenario integration tests

New scenario integration tests were implemented for Sahara. They are available
in the sahara-tests repository
(https://git.openstack.org/cgit/openstack/sahara-tests).

Tempest tests

Sahara has a Tempest plugin in the sahara-tests repository covering all major
API features.

Additional tests

Additional tests reside in the sahara-tests repository (as above):

	REST API tests checking to ensure that the Sahara REST API works.
The only parts that are not tested are cluster creation and EDP.

	CLI tests check read-only operations using the Sahara CLI.

For more information about these tests, please read
http://docs.openstack.org/developer/sahara-tests/tempest-plugin.html

Log Guidelines

Levels Guidelines

During the Kilo release cycle the sahara community defined the following
log levels:

	Debug: Shows everything and is likely not suitable for normal production
operation due to the sheer size of logs generated (e.g. scripts executions,
process execution, etc.).

	Info: Usually indicates successful service start/stop, versions and such
non-error related data. This should include largely positive units of work
that are accomplished (e.g. service setup and configuration, cluster start,
job execution information).

	Warning: Indicates that there might be a systemic issue;
potential predictive failure notice (e.g. job execution failed).

	Error: An error has occurred and the administrator should research the error
information (e.g. cluster failed to start, plugin violations of operation).

	Critical: An error has occurred and the system might be unstable, anything
that eliminates part of sahara’s intended functionalities; immediately get
administrator assistance (e.g. failed to access keystone/database, failed to
load plugin).

Formatting Guidelines

Sahara uses string formatting defined in PEP 3101 [https://www.python.org/dev/peps/pep-3101/] for logs.

LOG.warning(_LW("Incorrect path: {path}").format(path=path))

Translation Guidelines

All log levels except Debug require translation. None of the separate
CLI tools packaged with sahara contain log translations.

	Debug: no translation

	Info: _LI

	Warning: _LW

	Error: _LE

	Critical: _LC

API Version 2 Development

The sahara project is currently in the process of creating a new
RESTful application programming interface (API). This interface is
experimental and will not be enabled until it has achieved feature
parity with the current (version 1.1) API.

This document defines the steps necessary to enable and communicate
with the new API. This API has a few fundamental changes from the
previous APIs and they should be noted before proceeding with
development work.

Warning

This API is currently marked as experimental. It is not supported
by the sahara python client. These instructions are included purely
for developers who wish to help participate in the development
effort.

Enabling the experimental API

There are a few changes to the WSGI pipeline that must be made to
enable the new v2 API. These changes will leave the 1.0 and 1.1 API
versions in place and will not adjust their communication parameters.

To begin, uncomment, or add, the following sections in your
api-paste.ini file:

[app:sahara_apiv2]
paste.app_factory = sahara.api.middleware.sahara_middleware:RouterV2.factory

[filter:auth_validator_v2]
paste.filter_factory = sahara.api.middleware.auth_valid:AuthValidatorV2.factory

These lines define a new authentication filter for the v2 API, and
define the application that will handle the new calls.

With these new entries in the paste configuration, we can now enable
them with the following changes to the api-paste.ini file:

[pipeline:sahara]
pipeline = cors request_id acl auth_validator_v2 sahara_api

[composite:sahara_api]
use = egg:Paste#urlmap
/: sahara_apiv2

There are 2 significant changes occurring here; changing the
authentication validator in the pipline, and changing the root “/”
application to the new v2 handler.

At this point the sahara API server should be configured to accept
requests on the new v2 endpoints.

Communicating with the v2 API

The v2 API makes at least one major change from the previous versions,
removing the OpenStack project identifier from the URL. Instead of
adding this UUID to the URL, it is now required to be included as a
header named OpenStack-Project-ID.

For example, in previous versions of the API, a call to get the list of
clusters for project “12345678-1234-1234-1234-123456789ABC” would have
been made as follows:

GET /v1.1/12345678-1234-1234-1234-123456789ABC/clusters
X-Auth-Token: {valid auth token}

This call would now be made to the following URL, while including the
project identifier in a header named OpenStack-Project-ID:

GET /v2/clusters
X-Auth-Token: {valid auth token}
OpenStack-Project-ID: 12345678-1234-1234-1234-123456789ABC

Using a tool like HTTPie [https://github.com/jkbrzt/httpie], the
same request could be made like this:

$ httpie http://{sahara service ip:port}/v2/clusters \
 X-Auth-Token:{valid auth token} \
 OpenStack-Project-ID:12345678-1234-1234-1234-123456789ABC

Following the implementation progress

As the creation of this API will be under regular change until it moves
out of the experimental phase, a wiki page has been established to help
track the progress.

https://wiki.openstack.org/wiki/Sahara/api-v2

This page will help to coordinate the various reviews, specs, and work
items that are a continuing facet of this work.

The API service layer

When contributing to the version 2 API, it will be necessary to add code
that modifies the data and behavior of HTTP calls as they are sent to
and from the processing engine and data abstraction layers. Most
frequently in the sahara codebase, these interactions are handled in the
modules of the sahara.service.api package. This package contains
code for all versions of the API and follows a namespace mapping that is
similar to the routing functions of sahara.api

Although these modules are not the definitive end of all answers to API
related code questions, they are a solid starting point when examining
the extent of new work. Furthermore, they serve as a central point to
begin API debugging efforts when the need arises.

Pluggable Provisioning Mechanism

Sahara can be integrated with 3rd party management tools like Apache Ambari
and Cloudera Management Console. The integration is achieved using the plugin
mechanism.

In short, responsibilities are divided between the Sahara core and a plugin as
follows. Sahara interacts with the user and uses Heat to provision OpenStack
resources (VMs, baremetal servers, security groups, etc.) The plugin installs
and configures a Hadoop cluster on the provisioned instances. Optionally,
a plugin can deploy management and monitoring tools for the cluster. Sahara
provides plugins with utility methods to work with provisioned instances.

A plugin must extend the sahara.plugins.provisioning:ProvisioningPluginBase
class and implement all the required methods. Read Plugin SPI for
details.

The instance objects provided by Sahara have a remote property which
can be used to interact with instances. The remote is a context manager so
you can use it in with instance.remote: statements. The list of available
commands can be found in sahara.utils.remote.InstanceInteropHelper.
See the source code of the Vanilla plugin for usage examples.

Plugin SPI

Plugin interface

get_versions()

Returns all available versions of the plugin. Depending on the plugin, this
version may map directly to the HDFS version, or it may not; check your
plugin’s documentation. It is responsibility of the plugin to make sure that
all required images for each hadoop version are available, as well as configs
and whatever else that plugin needs to create the Hadoop cluster.

Returns: list of strings representing plugin versions

Example return value: [“1.2.1”, “2.3.0”, “2.4.1”]

get_configs(hadoop_version)

Lists all configs supported by the plugin with descriptions, defaults, and
targets for which this config is applicable.

Returns: list of configs

Example return value: ((“JobTracker heap size”, “JobTracker heap size, in
MB”, “int”, “512”, “mapreduce”, “node”, True, 1))

get_node_processes(hadoop_version)

Returns all supported services and node processes for a given Hadoop version.
Each node process belongs to a single service and that relationship is
reflected in the returned dict object. See example for details.

Returns: dictionary having entries (service -> list of processes)

Example return value: {“mapreduce”: [“tasktracker”, “jobtracker”], “hdfs”:
[“datanode”, “namenode”]}

get_required_image_tags(hadoop_version)

Lists tags that should be added to OpenStack Image via Image Registry. Tags
are used to filter Images by plugin and hadoop version.

Returns: list of tags

Example return value: [“tag1”, “some_other_tag”, ...]

validate(cluster)

Validates a given cluster object. Raises a SaharaException with a meaningful
message in the case of validation failure.

Returns: None

Example exception: <NotSingleNameNodeException {code=’NOT_SINGLE_NAME_NODE’,
message=’Hadoop cluster should contain only 1 NameNode instance. Actual NN
count is 2’ }>

validate_scaling(cluster, existing, additional)

To be improved.

Validates a given cluster before scaling operation.

Returns: list of validation_errors

update_infra(cluster)

This method is no longer used now that Sahara utilizes Heat for OpenStack
resource provisioning, and is not currently utilized by any plugin.

Returns: None

configure_cluster(cluster)

Configures cluster on the VMs provisioned by sahara. In this function the
plugin should perform all actions like adjusting OS, installing required
packages (including Hadoop, if needed), configuring Hadoop, etc.

Returns: None

start_cluster(cluster)

Start already configured cluster. This method is guaranteed to be called only
on a cluster which was already prepared with configure_cluster(...) call.

Returns: None

scale_cluster(cluster, instances)

Scale an existing cluster with additional instances. The instances argument is
a list of ready-to-configure instances. Plugin should do all configuration
operations in this method and start all services on those instances.

Returns: None

get_edp_engine(cluster, job_type)

Returns an EDP job engine object that supports the specified job_type on the
given cluster, or None if there is no support. The EDP job engine object
returned must implement the interface described in Elastic Data Processing (EDP) SPI. The
job_type is a String matching one of the job types listed in
Job Types.

Returns: an EDP job engine object or None

decommission_nodes(cluster, instances)

Scale cluster down by removing a list of instances. The plugin should stop
services on the provided list of instances. The plugin also may need to update
some configurations on other instances when nodes are removed; if so, this
method must perform that reconfiguration.

Returns: None

on_terminate_cluster(cluster)

When user terminates cluster, sahara simply shuts down all the cluster VMs.
This method is guaranteed to be invoked before that, allowing the plugin to do
some clean-up.

Returns: None

get_open_ports(node_group)

When user requests sahara to automatically create a security group for the
node group (auto_security_group property set to True), sahara will call
this plugin method to get a list of ports that need to be opened.

Returns: list of ports to be open in auto security group for the given node
group

get_edp_job_types(versions)

Optional method, which provides the ability to see all supported job types for
specified plugin versions.

Returns: dict with supported job types for specified versions of plugin

recommend_configs(self, cluster, scaling=False)

Optional method, which provides recommendations for cluster configuration
before creating/scaling operation.

get_image_arguments(self, hadoop_version):

Optional method, which gets the argument set taken by the plugin’s image
generator, or NotImplemented if the plugin does not provide image generation
support. See Image Generation.

Returns: A sequence with items of type sahara.plugins.images.ImageArgument.

pack_image(self, hadoop_version, remote, reconcile=True, ...):

Optional method which packs an image for registration in Glance and use by
Sahara. This method is called from the image generation CLI rather than from
the Sahara api or engine service. See Image Generation.

Returns: None (modifies the image pointed to by the remote in-place.)

validate_images(self, cluster, reconcile=True, image_arguments=None):

Validates the image to be used to create a cluster, to ensure that it meets
the specifications of the plugin. See Image Generation.

Returns: None; may raise a sahara.plugins.exceptions.ImageValidationError

Object Model

Here is a description of all the objects involved in the API.

Notes:

	clusters and node_groups have ‘extra’ fields allowing the plugin to
persist any supplementary info about the cluster.

	node_process is just a process that runs on some node in cluster.

Example list of node processes:

	jobtracker

	namenode

	tasktracker

	datanode

	Each plugin may have different names for the same processes.

Config

An object, describing one configuration entry

	Property
	Type
	Description

	name
	string
	Config name.

	description
	string
	A hint for user, what this config is used for.

	config_type
	enum
	possible values are: ‘string’, ‘integer’,
‘boolean’, ‘enum’.

	config_values
	list
	List of possible values, if config_type is
enum.

	default_value
	string
	Default value for config.

	applicable_target
	string
	The target could be either a service returned
by get_node_processes(...) call
in form of ‘service:<service name>’, or
‘general’.

	scope
	enum
	Could be either ‘node’ or ‘cluster’.

	is_optional
	bool
	If is_optional is False and no default_value
is specified, user must provide a value.

	priority
	int
	1 or 2. A Hint for UI. Configs with priority
1 are always displayed.
Priority 2 means user should click a button
to see the config.

User Input

Value provided by user for a specific config.

	Property
	Type
	Description

	config
	config
	A config object for which this user_input is provided.

	value
	...
	Value for the config. Type depends on Config type.

Instance

An instance created for cluster.

	Property
	Type
	Description

	instance_id
	string
	Unique instance identifier.

	instance_name
	string
	OpenStack instance name.

	internal_ip
	string
	IP to communicate with other instances.

	management_ip
	string
	IP of instance, accessible outside of internal
network.

	volumes
	list
	List of volumes attached to instance. Empty if
ephemeral drive is used.

	nova_info
	object
	Nova instance object.

	username
	string
	Username, that sahara uses for establishing
remote connections to instance.

	hostname
	string
	Same as instance_name.

	fqdn
	string
	Fully qualified domain name for this instance.

	remote
	helpers
	Object with helpers for performing remote
operations.

Node Group

Group of instances.

	Property
	Type
	Description

	name
	string
	Name of this Node Group in Cluster.

	flavor_id
	string
	OpenStack Flavor used to boot instances.

	image_id
	string
	Image id used to boot instances.

	node_processes
	list
	List of processes running on each instance.

	node_configs
	dict
	Configs dictionary, applied to instances.

	volumes_per_node
	int
	Number of volumes mounted to each instance.
0 means use ephemeral drive.

	volumes_size
	int
	Size of each volume (GB).

	volumes_mount_prefix
	string
	Prefix added to mount path of each volume.

	floating_ip_pool
	string
	Floating IP Pool name. All instances in the
Node Group will have Floating IPs assigned
from this pool.

	count
	int
	Number of instances in this Node Group.

	username
	string
	Username used by sahara to establish remote
connections to instances.

	configuration
	dict
	Merged dictionary of node configurations
and cluster configurations.

	storage_paths
	list
	List of directories where storage should be
placed.

Cluster

Contains all relevant info about cluster. This object is is provided to the
plugin for both cluster creation and scaling. The “Cluster Lifecycle” section
below further specifies which fields are filled at which moment.

	Property
	Type
	Description

	name
	string
	Cluster name.

	project_id
	string
	OpenStack Project id where this
Cluster is available.

	plugin_name
	string
	Plugin name.

	hadoop_version
	string
	Hadoop version running on instances.

	default_image_id
	string
	OpenStack image used to boot
instances.

	node_groups
	list
	List of Node Groups.

	cluster_configs
	dict
	Dictionary of Cluster scoped
configurations.

	cluster_template_id
	string
	Cluster Template used for Node Groups
and Configurations.

	user_keypair_id
	string
	OpenStack keypair added to instances
to make them accessible for user.

	neutron_management_network
	string
	Neutron network ID. Instances will
get fixed IPs in this network if
‘use_neutron’ config is set to True.

	anti_affinity
	list
	List of processes that will be run on
different hosts.

	description
	string
	Cluster Description.

	info
	dict
	Dictionary for additional information.

Validation Error

Describes what is wrong with one of the values provided by user.

	Property
	Type
	Description

	config
	config
	A config object that is not valid.

	error_message
	string
	Message that describes what exactly is wrong.

Elastic Data Processing (EDP) SPI

The EDP job engine objects provide methods for creating, monitoring, and
terminating jobs on Sahara clusters. Provisioning plugins that support EDP
must return an EDP job engine object from the get_edp_engine(cluster, job_type) method
described in Plugin SPI.

Sahara provides subclasses of the base job engine interface that support EDP
on clusters running Oozie, Spark, and/or Storm. These are described below.

Job Types

Some of the methods below test job type. Sahara supports the following string
values for job types:

	Hive

	Java

	Pig

	MapReduce

	MapReduce.Streaming

	Spark

	Shell

	Storm

Note

Constants for job types are defined in sahara.utils.edp.

Job Status Values

Several of the methods below return a job status value. A job status value is
a dictionary of the form:

{‘status’: job_status_value}

where job_status_value is one of the following string values:

	DONEWITHERROR

	FAILED

	TOBEKILLED

	KILLED

	PENDING

	RUNNING

	SUCCEEDED

Note, constants for job status are defined in sahara.utils.edp

EDP Job Engine Interface

The sahara.service.edp.base_engine.JobEngine class is an
abstract class with the following interface:

cancel_job(job_execution)

Stops the running job whose id is stored in the job_execution object.

Returns: None if the operation was unsuccessful or an updated job status
value.

get_job_status(job_execution)

Returns the current status of the job whose id is stored in the job_execution
object.

Returns: a job status value.

run_job(job_execution)

Starts the job described by the job_execution object

Returns: a tuple of the form (job_id, job_status_value, job_extra_info).

	job_id is required and must be a string that allows the EDP engine to
uniquely identify the job.

	job_status_value may be None or a job status value

	job_extra_info may be None or optionally a dictionary that the EDP engine
uses to store extra information on the job_execution_object.

validate_job_execution(cluster, job, data)

Checks whether or not the job can run on the cluster with the specified data.
Data contains values passed to the /jobs/<job_id>/execute REST API method
during job launch. If the job cannot run for any reason, including job
configuration, cluster configuration, or invalid data, this method should
raise an exception.

Returns: None

get_possible_job_config(job_type)

Returns hints used by the Sahara UI to prompt users for values when
configuring and launching a job. Note that no hints are required.

See Elastic Data Processing (EDP) for more information on how configuration values,
parameters, and arguments are used by different job types.

Returns: a dictionary of the following form, containing hints for configs,
parameters, and arguments for the job type:

{‘job_config’: {‘configs’: [], ‘params’: {}, ‘args’: []}}

	args is a list of strings

	params contains simple key/value pairs

	each item in configs is a dictionary with entries
for ‘name’ (required), ‘value’, and ‘description’

get_supported_job_types()

This method returns the job types that the engine supports. Not all engines
will support all job types.

Returns: a list of job types supported by the engine.

Oozie Job Engine Interface

The sahara.service.edp.oozie.engine.OozieJobEngine class is derived from
JobEngine. It provides implementations for all of the methods in the base
interface but adds a few more abstract methods.

Note that the validate_job_execution(cluster, job, data) method does basic
checks on the job configuration but probably should be overloaded to include
additional checks on the cluster configuration. For example, the job engines
for plugins that support Oozie add checks to make sure that the Oozie service
is up and running.

get_hdfs_user()

Oozie uses HDFS to distribute job files. This method gives the name of the
account that is used on the data nodes to access HDFS (such as ‘hadoop’ or
‘hdfs’). The Oozie job engine expects that HDFS contains a directory for this
user under /user/.

Returns: a string giving the username for the account used to access HDFS on
the cluster.

create_hdfs_dir(remote, dir_name)

The remote object remote references a node in the cluster. This method
creates the HDFS directory dir_name under the user specified by
get_hdfs_user() in the HDFS accessible from the specified node. For example,
if the HDFS user is ‘hadoop’ and the dir_name is ‘test’ this method would
create ‘/user/hadoop/test’.

The reason that this method is broken out in the interface as an abstract
method is that different versions of Hadoop treat path creation differently.

Returns: None

get_oozie_server_uri(cluster)

Returns the full URI for the Oozie server, for example
http://my_oozie_host:11000/oozie. This URI is used by an Oozie client to
send commands and queries to the Oozie server.

Returns: a string giving the Oozie server URI.

get_oozie_server(self, cluster)

Returns the node instance for the host in the cluster running the Oozie
server.

Returns: a node instance.

get_name_node_uri(self, cluster)

Returns the full URI for the Hadoop NameNode, for example
http://master_node:8020.

Returns: a string giving the NameNode URI.

get_resource_manager_uri(self, cluster)

Returns the full URI for the Hadoop JobTracker for Hadoop version 1 or the
Hadoop ResourceManager for Hadoop version 2.

Returns: a string giving the JobTracker or ResourceManager URI.

Spark Job Engine

The sahara.service.edp.spark.engine.SparkJobEngine class provides a full EDP
implementation for Spark standalone clusters.

Note

The validate_job_execution(cluster, job, data) method does basic
checks on the job configuration but probably should be overloaded to
include additional checks on the cluster configuration. For example, the
job engine returned by the Spark plugin checks that the Spark version is
>= 1.0.0 to ensure that spark-submit is available.

get_driver_classpath(self)

Returns driver class path.

Returns: a string of the following format ‘ –driver-class-path
class_path_value‘.

Sahara Cluster Statuses Overview

All Sahara Cluster operations are performed in multiple steps. A Cluster object
has a Status attribute which changes when Sahara finishes one step of
operations and starts another one. Also a Cluster object has a Status
description attribute which changes whenever Cluster errors occur.

	Sahara supports three types of Cluster operations:

	
	Create a new Cluster

	Scale/Shrink an existing Cluster

	Delete an existing Cluster

Creating a new Cluster

1. Validating

Before performing any operations with OpenStack environment, Sahara validates
user input.

	There are two types of validations, that are done:

	
	Check that a request contains all necessary fields and that the request does
not violate any constraints like unique naming, etc.

	Plugin check (optional). The provisioning Plugin may also perform any
specific checks like a Cluster topology validation check.

If any of the validations fails during creating, the Cluster object will still
be kept in the database with an Error status. If any validations fails
during scaling the Active Cluster, it will be kept with an Active
status. In both cases status description will contain error messages about the
reasons of failure.

2. InfraUpdating

This status means that the Provisioning plugin is performing some
infrastructure updates.

3. Spawning

	Sahara sends requests to OpenStack for all resources to be created:

	
	VMs

	Volumes

	Floating IPs (if Sahara is configured to use Floating IPs)

It takes some time for OpenStack to schedule all the required VMs and Volumes,
so sahara will wait until all of the VMs are in an Active state.

4. Waiting

Sahara waits while VMs’ operating systems boot up and all internal
infrastructure components like networks and volumes are attached and ready to
use.

5. Preparing

Sahara prepares a Cluster for starting. This step includes generating the
/etc/hosts file or changing /etc/resolv.conf file (if you use Designate
service), so that all instances can access each other by a hostname.
Also Sahara updates the authorized_keys file on each VM, so that VMs can
communicate without passwords.

6. Configuring

Sahara pushes service configurations to VMs. Both XML and JSON based
configurations and environmental variables are set on this step.

7. Starting

Sahara is starting Hadoop services on Cluster’s VMs.

8. Active

Active status means that a Cluster has started successfully and is ready to run
EDP Jobs.

Scaling/Shrinking an existing Cluster

1. Validating

Sahara checks the scale/shrink request for validity. The Plugin method called
for performing Plugin specific checks is different from the validation method
in creation.

2. Scaling

Sahara performs database operations updating all affected existing Node Groups
and creating new ones to join the existing Node Groups.

3. Adding Instances

Status is similar to Spawning in Cluster creation. Sahara adds required
amount of VMs to the existing Node Groups and creates new Node Groups.

4. Configuring

Status is similar to Configuring in Cluster creation. New instances are
being configured in the same manner as already existing ones. The VMs in the
existing Cluster are also updated with a new /etc/hosts file or
/etc/resolv.conf file.

5. Decommissioning

Sahara stops Hadoop services on VMs that will be deleted from a Cluster.
Decommissioning a Data Node may take some time because Hadoop rearranges data
replicas around the Cluster, so that no data will be lost after that Data Node
is deleted.

6. Deleting Instances

	Sahara sends requests to OpenStack to release unneeded resources:

	
	VMs

	Volumes

	Floating IPs (if they are used)

7. Active

The same Active status as after Cluster creation.

Deleting an existing Cluster

1. Deleting

The only step, that releases all Cluster’s resources and removes it from the
database.

Error State

If the Cluster creation fails, the Cluster will enter the Error state.
This status means the Cluster may not be able to perform any operations
normally. This cluster will stay in the database until it is manually deleted.
The reason for failure may be found in the sahara logs. Also, the status
description will contain information about the error.

If an error occurs during the Adding Instances operation, Sahara will first
try to rollback this operation. If a rollback is impossible or fails itself,
then the Cluster will also go into an Error state. If a rollback was
successful, Cluster will get into an Active state and status description
will contain a short message about the reason of Adding Instances failure.

How to run a Sahara cluster on bare metal servers

Hadoop clusters are designed to store and analyze extremely large amounts
of unstructured data in distributed computing environments. Sahara enables
you to boot Hadoop clusters in both virtual and bare metal environments.
When Booting Hadoop clusters with Sahara on bare metal servers, you benefit
from the bare metal performance with self-service resource provisioning.

	Create a new OpenStack environment using Devstack as described
in the Devstack Guide [http://docs.openstack.org/developer/devstack/]

	Install Ironic as described in the Ironic Installation Guide [http://docs.openstack.org/developer/ironic/deploy/install-guide.html]

	Install Sahara as described in the Sahara Installation Guide [http://docs.openstack.org/developer/sahara/userdoc/installation.guide.html]

	Build the Sahara image and prepare it for uploading to Glance:
	Build an image for Sahara plugin with the -b flag. Use sahara image elements
when building the image. See https://github.com/openstack/sahara-image-elements

	Convert the qcow2 image format to the raw format. For example:

$ qemu-img convert -O raw image-converted.qcow image-converted-from-qcow2.raw

	Mount the raw image to the system.

	chroot to the mounted directory and remove the installed grub.

	Build grub2 from sources and install to /usr/sbin.

	In /etc/sysconfig/selinux, disable selinux SELINUX=disabled

	In the configuration file, set onboot=yes and BOOTPROTO=dhcp
for every interface.

	Add the configuration files for all interfaces in the
/etc/sysconfig/network-scripts directory.

	Upload the Sahara disk image to Glance, and register it in the
Sahara Image Registry. Referencing its separate kernel and initramfs images.

	Configure the bare metal network for the Sahara cluster nodes:
	Add bare metal servers to your environment manually referencing their
IPMI addresses (Ironic does not detect servers), for Ironic to manage
the servers power and network. For example:

$ ironic node-create -d pxe_ipmitool \
$ -i ipmi_address=$IP_ADDRESS \
$ -i ipmi_username=$USERNAME \
$ -i ipmi_password=$PASSWORD \
$ -i pxe_deploy_kernel=$deploy.kernel.id \
$ -i pxe_deploy_ramdisk=$deploy.ramfs.id

$ ironic port-create -n $NODE_ID -a "$MAC_eth1"

	Add the hardware information:

$ ironic node-update $NODE_ID add properties/cpus=$CPU \
$ properties/memory_mb=$RAM properties/local_gb=$ROOT_GB \
$ properties/cpu_arch='x86_64'

	Add a special flavor for the bare metal instances with an arch meta
parameter to match the virtual architecture of the server’s CPU
with the metal one. For example:

$ nova flavor-create baremetal auto $RAM $DISK_GB $CPU
$ nova flavor-key baremetal set cpu_arch=x86_64

Note:

The vCPU ad vRAM parameters (x86_64 in the example) will not be applied because
the operating system has access to the real CPU cores and RAM. Only the root
disk parameter is applied, and Ironic will resize the root disk partition.
Ironic supports only a flat network topology for the bare metal provisioning,
you must use Neutron to configure it.

	Launch your Sahara cluster on Ironic from the cluster template:

	Log in to Horizon.

	
	Go to Data Processing > Node Group Templates.

	
	Find the templates that belong to the plugin you would like to use

	Update those templates to use ‘bare metal’ flavor instead of the
default one

	Go to Data Processing > Cluster Templates.

	Click Launch Cluster.

	
	On the Launch Cluster dialog:

	
	Specify the bare metal network for cluster nodes

The cluster provisioning time is slower compared to the cluster provisioning
of the same size that runs on VMs. Ironic does real hardware reports which
is time consuming, and the whole root disk is filled from /dev/zero for
security reasons.

Known limitations:

	Security groups are not applied.

	When booting a nova instance with a bare metal flavor, the user can not
provide a pre-created neutron port to nova boot command. LP1544195 [https://bugs.launchpad.net/nova/+bug/1544195]

	Nodes are not isolated by projects.

	VM to Bare Metal network routing is not allowed.

	The user has to specify the count of ironic nodes before Devstack deploys
an OpenStack.

	The user cannot use the same image for several ironic node types.
For example, if there are 3 ironic node types, the user has to create
3 images and 3 flavors.

	Multiple interfaces on a single node are not supported. Devstack configures
only one interface.

Project hosting

Launchpad [http://launchpad.net] hosts the Sahara project. The Sahara project homepage on
Launchpad is http://launchpad.net/sahara.

Launchpad credentials

Creating a login on Launchpad is important even if you don’t use the Launchpad
site itself, since Launchpad credentials are used for logging in on several
OpenStack-related sites. These sites include:

	Wiki [http://wiki.openstack.org/sahara]

	Gerrit (see Code Reviews with Gerrit)

	Jenkins (see Continuous Integration with Jenkins)

Mailing list

The mailing list email is openstack-dev@lists.openstack.org; use the
subject prefix [sahara] to address the team. To participate in the
mailing list subscribe to the list at
http://lists.openstack.org/cgi-bin/mailman/listinfo

Bug tracking

Report Sahara bugs at https://bugs.launchpad.net/sahara

Feature requests (Blueprints)

Sahara uses specs to track feature requests. Blueprints are at
https://blueprints.launchpad.net/sahara. They provide a high-level summary of
proposed changes and track associated commits. Sahara also uses specs for
in-depth descriptions and discussions of blueprints. Specs follow a defined
format and are submitted as change requests to the openstack/sahara-specs
repository. Every blueprint should have an associated spec that is agreed
on and merged to the sahara-specs repository before it is approved, unless the
whole team agrees that the implementation path for the feature described in
the blueprint is completely understood.

Technical support

Sahara uses Ask OpenStack [https://ask.openstack.org] to track Sahara technical support questions.
Questions related to Sahara should be tagged with ‘sahara’.

Code Reviews with Gerrit

Sahara uses the Gerrit [http://code.google.com/p/gerrit] tool to review proposed code changes. The review
site is http://review.openstack.org.

Gerrit is a complete replacement for Github pull requests. All Github pull
requests to the Sahara repository will be ignored.

See Development Workflow [http://docs.openstack.org/infra/manual/developers.html#development-workflow] for information about how to get
started using Gerrit.

Continuous Integration with Jenkins

Each change made to Sahara core code is tested with unit and integration tests
and style checks using flake8.

Unit tests and style checks are performed on public OpenStack Jenkins [https://jenkins.openstack.org/] managed by Zuul [http://status.openstack.org/zuul/].

Unit tests are checked using python 2.7.

The result of those checks and Unit tests are represented as a vote of +1 or
-1 in the Verify column in code reviews from the Jenkins user.

Integration tests check CRUD operations for the Image Registry, Templates, and
Clusters. Also a test job is launched on a created Cluster to verify Hadoop
work.

All integration tests are launched by Jenkins [https://sahara.mirantis.com/jenkins/] on the internal Mirantis OpenStack
Lab.

Jenkins keeps a pool of VMs to run tests in parallel. Even with the pool of VMs
integration testing may take a while.

Jenkins is controlled for the most part by Zuul which determines what jobs are
run when.

Zuul status is available at this address: Zuul Status [https://sahara.mirantis.com/zuul].

For more information see: Sahara Hadoop Cluster CI [https://wiki.openstack.org/wiki/Sahara/SaharaCI].

The integration tests result is represented as a vote of +1 or -1 in the
Verify column in a code review from the Sahara Hadoop Cluster CI user.

You can put sahara-ci-recheck in comment, if you want to recheck sahara-ci
jobs. Also, you can put recheck in comment, if you want to recheck both
Jenkins and sahara-ci jobs. Finally, you can put reverify in a comment, if
you only want to recheck Jenkins jobs.

Index

Autoconfiguring templates

During the Liberty development cycle sahara implemented a tool that recommends
and applies configuration values for cluster templates and node group
templates. These recommendations are based on the number of specific instances
and on flavors of the cluster node groups. Currently the following plugins
support this feature:

	CDH;

	Ambari;

	Spark;

	the Vanilla Apache Hadoop plugin.

By default this feature is enabled for all cluster templates and node group
templates. If you want to disable this feature for a particular cluster or
node group template you should set the use_autoconfig field to false.

The following describes the settings for which sahara can recommend
autoconfiguration:

The Cloudera, Spark and Vanilla Apache Hadoop plugin support configuring
dfs.replication (dfs_replication for Cloudera plugin) which is
calculated as a minimum from the amount of datanode (HDFS_DATANODE for
Cloudera plugin) instances in the cluster and the default value for
dfs.replication.

The Vanilla Apache Hadoop plugin and Cloudera plugin support autoconfiguration
of basic YARN and MapReduce configs. These autoconfigurations are based on the
following documentation:
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html

The Ambari plugin has its own strategies on configuration recommendations. You
can choose one of ALWAYS_APPLY, NEVER_APPLY, and
ONLY_STACK_DEFAULTS_APPLY. By default the Ambari plugin follows the
NEVER_APPLY strategy. You can get more information about strategies in
Ambari’s official documentation:
https://cwiki.apache.org/confluence/display/AMBARI/Blueprints#Blueprints-ClusterCreationTemplateStructure

Image Generation

As of Newton, Sahara supports the creation of image generation and image
validation tooling as part of the plugin. If implemented properly, this
feature will enable your plugin to:

	Validate that images passed to it for use in cluster provisioning meet its
specifications.

	Provision images from “clean” (OS-only) images.

	Pack pre-populated images for registration in Glance and use by Sahara.

All of these features can use the same image declaration, meaning that logic
for these three use cases can be maintained in one place.

This guide will explain how to enable this feature for your plugin, as well as
how to write or modify the image generation manifests that this feature uses.

Image Generation CLI

The key user-facing interface to this feature is the CLI script
sahara-image-pack. This script will be installed with all other Sahara
binaries.

Interface

The script sahara-image-pack takes the following primary arguments:

--config-file PATH Path to a config file to use. Multiple config files
 can be specified, with values in later files taking
 precedence. Defaults to None.
--image IMAGE The path to an image to modify. This image will be
 modified in-place: be sure to target a copy if you
 wish to maintain a clean master image.
--root-filesystem ROOT_FS
 The filesystem to mount as the root volume on the
 image. Novalue is required if only one filesystem is
 detected.
--test-only If this flag is set, no changes will be made to the
 image; instead, the script will fail if discrepancies
 are found between the image and the intended state.

After these arguments, the script takes PLUGIN and VERSION arguments.
These arguments will allow any plugin and version combination which supports
the image packing feature. Plugins may require their own arguments at specific
versions; use the --help feature with PLUGIN and VERSION to see
the appropriate argument structure.

a plausible command-line invocation would be:

sahara-image-pack --image CentOS.qcow2 \
 --config-file etc/sahara/sahara.conf \
 cdh 5.7.0 [cdh 5.7.0 specific arguments, if any]

This script will modify the target image in-place. Please copy your image
if you want a backup or if you wish to create multiple images from a single
base image.

This CLI will automatically populate the set of available plugins and
versions from the plugin set loaded in Sahara, and will show any plugin for
which the image packing feature is available. The next sections of this guide
will first describe how to modify an image packing specification for one
of the plugins, and second, how to enable the image packing feature for new
or existing plugins.

Dev notes on the CLI itself

The script depends on a python library which is not packaged
in pip, but is available through yum, dnf, and apt. If you have installed
Sahara through yum, dnf, or apt, you should have appropriate dependencies,
but if you wish to use the script but are working with Sahara from source,
run whichever of the following is appropriate to your OS:

sudo yum install -y libguestfs python-libguestfs libguestfs-tools
sudo dnf install -y libguestfs python-libguestfs libguestfs-tools
sudo apt-get install -y libguestfs python-libguestfs libguestfs-tools

If you are using tox to create virtual environments for your Sahara work,
please use the images environment to run sahara-image-pack. This
environment is configured to use system site packages, and will thus
be able to find its dependency on python-libguestfs.

The Image Manifest

As you’ll read in the next section, Sahara’s image packing tools allow plugin
authors to use any toolchain they choose. However, Sahara does provide a
built-in image packing framework which is uniquely suited to OpenStack use
cases, as it is designed to run the same logic while pre-packing an image or
while preparing an instance to launch a cluster after it is spawned in
OpenStack.

By convention, the image specification, and all the scripts that it calls,
should be located in the plugin’s resources directory under a subdirectory
named “images”.

A sample specification is below; the example is reasonably silly in practice,
and is only designed to highlight the use of the currently available
validator types. We’ll go through each piece of this specification, but the
full sample is presented for context.

arguments:
 java-distro:
 description: The java distribution.
 default: openjdk
 required: false
 choices:
 - oracle-java
 - openjdk

validators:
 - os_case:
 - redhat:
 - package: nfs-utils
 - debian:
 - package: nfs-common
 - argument_case:
 argument_name: java-distro
 cases:
 openjdk:
 - any:
 - all:
 - package: java-1.8.0-openjdk-devel
 - argument_set:
 argument_name: java-version
 value: 1.8.0
 - all:
 - package: java-1.7.0-openjdk-devel
 - argument_set:
 argument_name: java-version
 value: 1.7.0
 oracle-java:
 - script: install_oracle_java.sh
 - script: setup_java.sh
 - package:
 - hadoop
 - hadoop-libhdfs
 - hadoop-native
 - hadoop-pipes
 - hadoop-sbin
 - hadoop-lzo
 - lzo
 - lzo-devel
 - hadoop-lzo-native

The Arguments Section

First, the image specification should describe any arguments that may be used
to adjust properties of the image:

arguments: # The section header
 - java-distro: # The friendly name of the argument, and the name of the variable passed to scripts
 description: The java distribution. # A friendly description to be used in help text
 default: openjdk # A default value for the argument
 required: false # Whether or not the argument is required
 choices: # The argument value must match an element of this list
 - oracle-java
 - openjdk

Specifications may contain any number of arguments, as declared above, by
adding more members to the list under the arguments key.

The Validators Section

This is where the logical flow of the image packing and validation process
is declared. A tiny example validator list is specified below.

validators:
 - package: nfs-utils
 - script: setup_java.sh

This is fairly straightforward: this specification will install the nfs-utils
package (or check that it’s present) and then run the setup_java.sh script.

All validators may be run in two modes: reconcile mode and test-only mode
(reconcile == false). If validators are run in reconcile mode, any image or
instance state which is not already true will be updated, if possible. If
validators are run in test-only mode, they will only test the image or
instance, and will raise an error if this fails.

We’ll now go over the types of validators that are currently available in
Sahara. This framework is made to easily allow new validators to be created
and old ones to be extended: if there’s something you need, please do file a
wishlist bug or write and propose your own!

Action validators

These validators take specific, concrete actions to assess or modify your
image or instance.

The Package Validator

This validator type will install a package on the image, or validate that a
package is installed on the image. It can take several formats, as below:

validators:
 - package: hadoop
 - package:
 - hadoop-libhdfs
 - nfs-utils:
 version: 1.3.3-8

As you can see, a package declaration can consist of:

	The package name as a string

	A list of packages, any of which may be:
* The package name as a string
* A dict with the package name as a key and a version property

The Script Validator

This validator will run a script on the image. It can take several formats
as well:

validators:
 - script: simple_script.sh # Runs this file
 - script:
 set_java_home: # The name of a script file
 arguments: # Only the named environment arguments are passed, for clarity
 - jdk-home
 - jre-home
 output: OUTPUT_VAR
 - script:
 store_nfs_version: # Because inline is set, this is just a friendly name
 - inline: rpm -q nfs-utils # Runs this text directly, rather than reading a file
 - output: nfs-version # Places the stdout of this script into an argument
 # for future scripts to consume; if none exists, the
 # argument is created

Two variables are always available to scripts run under this framework:

	distro: The distro of the image, in case you want to switch on distro
within your script (rather than by using the os_case validator).

	reconcile: If this value equates to boolean true, then the script should
attempt to change the image or instance if it does not already meet the
specification. If this equates to boolean false, the script should exit with
a failure code if the image or instance does not already meet the
specification.

Flow Control Validators

These validators are used to build more complex logic into your
specifications explicitly in the yaml layer, rather than by deferring
too much logic to scripts.

The OS Case Validator

This validator runs different logic depending on which distribution of Linux
is being used in the guest.

validators:
 - os_case: # The contents are expressed as a list, not a dict, to preserve order
 - fedora: # Only the first match runs, so put distros before families
 - package: nfs_utils # The content of each case is a list of validators
 - redhat: # Red Hat distros include fedora, centos, and rhel
 - package: nfs-utils
 - debian: # The major supported Debian distro in Sahara is ubuntu
 - package: nfs-common

The Argument Case Validator

This validator runs different logic depending on the value of an argument.

validators:
 - argument_case:
 argument_name: java-distro # The name of the argument
 cases: # The cases are expressed as a dict, as only one can equal the argument's value
 openjdk:
 - script: setup-openjdk # The content of each case is a list of validators
 oracle-java:
 - script: setup-oracle-java

The All Validator

This validator runs all the validators within it, as one logical block. If any
validators within it fail to validate or modify the image or instance, it will
fail.

validators:
 - all:
 - package: nfs-utils
 - script: setup-nfs.sh

The Any Validator

This validator attempts to run each validator within it, until one succeeds,
and will report success if any do. If this is run in reconcile mode, it will
first try each validator in test-only mode, and will succeed without
making changes if any succeed (in the case below, if openjdk 1.7.0 were
already installed, the validator would succeed and would not install 1.8.0.)

validators:
 - any: # This validator will try to install openjdk-1.8.0, but it will settle for 1.7.0 if that fails
 - package: java-1.8.0-openjdk-devel
 - package: java-1.7.0-openjdk-devel

The Argument Set Validator

You may find that you wish to store state in one place in the specification
for use in another. In this case, you can use this validator to set an
argument for future use.

validators:
 - argument_set:
 argument_name: java-version
 value: 1.7.0

SPI Methods

In order to make this feature available for your plugin, you must
implement the following optional plugin SPI methods.

When implementing these, you may choose to use your own framework of choice
(Packer for image packing, etc.) By doing so, you can ignore the entire
framework and specification language described above. However, you may
wish to instead use the abstraction we’ve provided (its ability to keep
logic in one place for both image packing and cluster validation is useful
in the OpenStack context.) We will, of course, focus on that framework here.

def get_image_arguments(self, hadoop_version):
 """Gets the argument set taken by the plugin's image generator"""

def pack_image(self, hadoop_version, remote,
 reconcile=True, image_arguments=None):
 """Packs an image for registration in Glance and use by Sahara"""

def validate_images(self, cluster, reconcile=True, image_arguments=None):
 """Validates the image to be used by a cluster"""

The validate_images method is called after Heat provisioning of your cluster,
but before cluster configuration. If the reconcile keyword of this method is
set to False, the method should only test the instances without modification.
If it is set to True, the method should make any necessary changes (this can
be used to allow clusters to be spun up from clean, OS-only images.) This
method is expected to use an ssh remote to communicate with instances, as
per normal in Sahara.

The pack_image method can be used to modify an image file (it is called by the
CLI above). This method expects an ImageRemote, which is essentially a
libguestfs handle to the disk image file, allowing commands to be run on the
image directly (though it could be any concretion that allows commands to be
run against the image.)

By this means, the validators described above can execute the same logic in
the image packing, instance validation, and instance preparation cases with
the same degree of interactivity and logical control.

In order to future-proof this document against possible changes, the doctext
of these methods will not be reproduced here, but they are documented very
fully in the sahara.plugins.provisioning abstraction.

These abstractions can be found in the module sahara.plugins.images.
You will find that the framework has been built with extensibility and
abstraction in mind: you can overwrite validator types, add your own
without modifying any core sahara modules, declare hierarchies of resource
locations for shared resources, and more. These features are documented in
the sahara.plugins.images module itself (which has copious doctext,) and we
encourage you to explore and ask questions of the community if you are
curious or wish to build your own image generation tooling.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_images/openstack-interop.png
authenticate
user

create VM,
get VM info

_images/hadoop-cluster-example.jpg
“Core Workers" “Workers"
group group

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		Welcome to Sahara!

 		Rationale

 		Introduction

 		Details

 		General Workflow

 		User's Perspective

 		Integration with Object Storage

 		Pluggable Deployment and Monitoring

 		Architecture

 		Sahara Installation Guide

 		To install with Fuel

 		To install with RDO

 		To install into a virtual environment

 		Common installation steps

 		Optional installation of default templates

 		Notes:

 		Sahara Configuration Guide

 		Basic configuration

 		Networking configuration

 		Floating IP management

 		Notifications configuration

 		Orchestration configuration

 		Policy configuration

 		Examples

 		API configuration

 		OpenStack Dashboard Configuration Guide

 		1. Networking

 		2. Different endpoint

 		Sahara Advanced Configuration Guide

 		Custom network topologies

 		DNS Hostname Resolution

 		Data-locality configuration

 		Distributed mode configuration

 		Distributed periodic tasks configuration

 		External key manager usage

 		Indirect instance access through proxy nodes

 		Multi region deployment

 		Non-root users

 		Object Storage access using proxy users

 		Detailed instructions

 		Volume instance locality configuration

 		Autoconfiguration for templates

 		NTP service configuration

 		CORS (Cross Origin Resource Sharing) Configuration

 		Cleanup time for incomplete clusters

 		Security Group Rules Configuration

 		Sahara Upgrade Guide

 		Icehouse -> Juno

 		Main binary renamed to sahara-all

 		Authentication middleware changes

 		Database package changes

 		Sahara integration into OpenStack Dashboard

 		Virtual machine user name changes

 		Anti affinity implementation changed

 		Juno -> Kilo

 		Sahara requires policy configuration

 		Kilo -> Liberty

 		Direct engine deprecation

 		Policy namespace changed (policy.json)

 		Liberty -> Mitaka

 		Mitaka -> Newton

 		Sample sahara.conf file

 		Getting Started

 		Clusters

 		Templates

 		Provisioning Plugins

 		Image Registry

 		Features

 		Sahara (Data Processing) UI User Guide

 		Launching a cluster via the sahara UI

 		Registering an Image

 		Create Node Group Templates

 		Create a Cluster Template

 		Launching a Cluster

 		Scaling a Cluster

 		Elastic Data Processing (EDP)

 		Data Sources

 		Job Binaries

 		Job Templates (Known as “Jobs” in the API)

 		Jobs (Known as “Job Executions” in the API)

 		Example Jobs

 		Additional Notes

 		Launching a cluster via the Cluster Creation Guide

 		Running a job via the Job Execution Guide

 		Features Overview

 		Anti-affinity

 		Block Storage support

 		Cluster scaling

 		Data locality

 		Volume-to-instance locality

 		Distributed Mode

 		Hadoop HDFS and YARN High Availability

 		Networking support

 		Object Storage support

 		Shared Filesystem support

 		Orchestration support

 		DNS support

 		Kerberos support

 		Plugin Capabilities

 		Security group management

 		Shared and protected resources support

 		Data source placeholders support

 		Registering an Image

 		Provisioning Plugins

 		Managing plugins

 		Vanilla Plugin

 		Cluster Validation

 		Ambari Plugin

 		Apache Ambari Blueprints

 		Images

 		High Availability for HDFS and YARN

 		HDP Version Support

 		Cluster Validation

 		Enabling Kerberos security for cluster

 		Spark Plugin

 		Images

 		Spark configuration

 		Cluster Validation

 		Cloudera Plugin

 		Services Supported

 		High Availability Support

 		Cluster Validation

 		Enabling Kerberos security for cluster

 		MapR Distribution Plugin

 		Operation

 		Images

 		Hadoop Version Support

 		Cluster Validation

 		The MapR Plugin

 		Elastic Data Processing (EDP)

 		Overview

 		Interfaces

 		EDP Concepts

 		Job Binaries

 		Jobs

 		Data Sources

 		Job Execution

 		General Workflow

 		Specifying Configuration Values, Parameters, and Arguments

 		Using Data Source References as Arguments

 		Creating an Interface for Your Job

 		Generation of Swift Properties for Data Sources

 		Additional Details for Hive jobs

 		Additional Details for Pig jobs

 		Additional Details for MapReduce jobs

 		Additional Details for MapReduce.Streaming jobs

 		Additional Details for Java jobs

 		Additional Details for Shell jobs

 		Additional Details for Spark jobs

 		Special Sahara URLs

 		EDP Requirements

 		OpenStack Services

 		Cluster Processes

 		EDP Technical Considerations

 		Transient Clusters

 		Sahara REST API v1.1

 		1 General API information

 		1.1 Authentication and Authorization

 		1.2 Request / Response Types

 		1.3 Navigation by response

 		1.4 Faults

 		2 API

 		Requirements for Guests

 		Common Requirements

 		Vanilla Plugin Requirements

 		Hortonworks Plugin Requirements

 		Cloudera Plugin Requirements

 		Swift Integration

 		Hadoop patching

 		Hadoop configurations

 		Example

 		Limitations

 		Building Images for Vanilla Plugin

 		Building Images for Cloudera Plugin

 		Development Guidelines

 		Coding Guidelines

 		Static analysis

 		Modification of Upstream Files

 		Testing Guidelines

 		Documentation Guidelines

 		Event log Guidelines

 		OpenStack client usage guidelines

 		Storing sensitive information

 		Setting Up a Development Environment

 		Setup a Local Environment with Sahara inside DevStack

 		Setup a Local Environment with an external OpenStack

 		Setup local OpenStack dashboard with Sahara plugin

 		Sahara UI Dev Environment Setup

 		Tips and tricks for dev environment

 		Setup DevStack

 		Start VM and set up OS

 		Install DevStack

 		Managing sahara in DevStack

 		Setting fixed IP address for VMware Fusion VM

 		Sahara UI Dev Environment Setup

 		Install as a part of DevStack

 		Isolated Dashboard for Sahara

 		Quickstart guide

 		Launching a cluster via Sahara CLI commands

 		1. Install sahara

 		2. Identity service configuration

 		3. Upload an image to the Image service

 		4. Register the image with the sahara image registry

 		5. Create node group templates

 		6. Create a cluster template

 		7. Create cluster

 		8. Run a MapReduce job to check Hadoop installation

 		Elastic Data Processing (EDP)

 		Data Sources

 		Job Templates (Jobs in API)

 		Jobs (Job Executions in API)

 		How to Participate

 		Getting started

 		How to stay in touch with the community

 		How to post your first patch for review

 		How to build Oozie

 		Download

 		Hadoop Versions

 		JDK Versions

 		Build

 		Adding Database Migrations

 		Generate a New Migration Script

 		Follow the Sahara Naming Convention

 		Add Alembic Operations to the Script

 		Command Summary for sahara-db-manage

 		Sahara Testing

 		Unit Tests

 		Scenario integration tests

 		Tempest tests

 		Additional tests

 		Log Guidelines

 		Levels Guidelines

 		Formatting Guidelines

 		Translation Guidelines

 		API Version 2 Development

 		Enabling the experimental API

 		Communicating with the v2 API

 		Following the implementation progress

 		The API service layer

 		Pluggable Provisioning Mechanism

 		Plugin SPI

 		Plugin interface

 		get_versions()

 		get_configs(hadoop_version)

 		get_node_processes(hadoop_version)

 		get_required_image_tags(hadoop_version)

 		validate(cluster)

 		validate_scaling(cluster, existing, additional)

 		update_infra(cluster)

 		configure_cluster(cluster)

 		start_cluster(cluster)

 		scale_cluster(cluster, instances)

 		get_edp_engine(cluster, job_type)

 		decommission_nodes(cluster, instances)

 		on_terminate_cluster(cluster)

 		get_open_ports(node_group)

 		get_edp_job_types(versions)

 		recommend_configs(self, cluster, scaling=False)

 		get_image_arguments(self, hadoop_version):

 		pack_image(self, hadoop_version, remote, reconcile=True, ...):

 		validate_images(self, cluster, reconcile=True, image_arguments=None):

 		Object Model

 		Config

 		User Input

 		Instance

 		Node Group

 		Cluster

 		Validation Error

 		Elastic Data Processing (EDP) SPI

 		Job Types

 		Job Status Values

 		EDP Job Engine Interface

 		cancel_job(job_execution)

 		get_job_status(job_execution)

 		run_job(job_execution)

 		validate_job_execution(cluster, job, data)

 		get_possible_job_config(job_type)

 		get_supported_job_types()

 		Oozie Job Engine Interface

 		get_hdfs_user()

 		create_hdfs_dir(remote, dir_name)

 		get_oozie_server_uri(cluster)

 		get_oozie_server(self, cluster)

 		get_name_node_uri(self, cluster)

 		get_resource_manager_uri(self, cluster)

 		Spark Job Engine

 		get_driver_classpath(self)

 		Sahara Cluster Statuses Overview

 		Creating a new Cluster

 		1. Validating

 		2. InfraUpdating

 		3. Spawning

 		4. Waiting

 		5. Preparing

 		6. Configuring

 		7. Starting

 		8. Active

 		Scaling/Shrinking an existing Cluster

 		1. Validating

 		2. Scaling

 		3. Adding Instances

 		4. Configuring

 		5. Decommissioning

 		6. Deleting Instances

 		7. Active

 		Deleting an existing Cluster

 		1. Deleting

 		Error State

 		How to run a Sahara cluster on bare metal servers

 		Note:

 		Known limitations:

 		Project hosting

 		Launchpad credentials

 		Mailing list

 		Bug tracking

 		Feature requests (Blueprints)

 		Technical support

 		Code Reviews with Gerrit

 		Continuous Integration with Jenkins

_static/up-pressed.png

